Angles of arc-polygons and Lombardi drawings of cacti

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
David Eppstein, Daniel Frishberg, Martha C. Osegueda
{"title":"Angles of arc-polygons and Lombardi drawings of cacti","authors":"David Eppstein,&nbsp;Daniel Frishberg,&nbsp;Martha C. Osegueda","doi":"10.1016/j.comgeo.2023.101982","DOIUrl":null,"url":null,"abstract":"<div><p>We characterize the triples of interior angles that are possible in non-self-crossing triangles with circular-arc sides, and we prove that a given cyclic sequence of angles can be realized by a non-self-crossing polygon with circular-arc sides whenever all angles are ≤<em>π</em>. As a consequence of these results, we prove that every cactus has a planar Lombardi drawing (a drawing with edges depicted as circular arcs, meeting at equal angles at each vertex) for its natural embedding in which every cycle of the cactus is a face of the drawing. However, there exist planar embeddings of cacti that do not have planar Lombardi drawings.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We characterize the triples of interior angles that are possible in non-self-crossing triangles with circular-arc sides, and we prove that a given cyclic sequence of angles can be realized by a non-self-crossing polygon with circular-arc sides whenever all angles are ≤π. As a consequence of these results, we prove that every cactus has a planar Lombardi drawing (a drawing with edges depicted as circular arcs, meeting at equal angles at each vertex) for its natural embedding in which every cycle of the cactus is a face of the drawing. However, there exist planar embeddings of cacti that do not have planar Lombardi drawings.

弧多边形的角度与仙人掌的Lombardi绘画
我们刻画了在具有圆弧边的非自交三角形中可能存在的内角的三元组,并证明了当所有角度≤π时,给定的角的循环序列可以由具有圆弧面的非自交多边形实现。由于这些结果,我们证明了每个仙人掌都有一个平面的Lombardi图(一个边缘被描绘成圆弧的图,在每个顶点以相等的角度相交),用于其自然嵌入,其中仙人掌的每个循环都是图的一个面。然而,有一些仙人掌的平面嵌入物没有隆巴迪平面图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信