{"title":"Bottleneck matching in the plane","authors":"Matthew J. Katz , Micha Sharir","doi":"10.1016/j.comgeo.2023.101986","DOIUrl":null,"url":null,"abstract":"<div><p><span>We present a randomized algorithm that with high probability finds a bottleneck matching in a set of </span><span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi></math></span> points in the plane. The algorithm's running time is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>ω</mi><mo>></mo><mn>2</mn></math></span> is a constant such that any two <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices can be multiplied in time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>ω</mi></mrow></msup><mo>)</mo></math></span>. The state of the art in fast matrix multiplication allows us to set <span><math><mi>ω</mi><mo>=</mo><mn>2.3728596</mn></math></span>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000068","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a randomized algorithm that with high probability finds a bottleneck matching in a set of points in the plane. The algorithm's running time is , where is a constant such that any two matrices can be multiplied in time . The state of the art in fast matrix multiplication allows us to set .
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.