Annika Bonerath , Jan-Henrik Haunert , Joseph S.B. Mitchell , Benjamin Niedermann
{"title":"Shortcut hulls: Vertex-restricted outer simplifications of polygons","authors":"Annika Bonerath , Jan-Henrik Haunert , Joseph S.B. Mitchell , Benjamin Niedermann","doi":"10.1016/j.comgeo.2023.101983","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>P</em> be a polygon and <span><math><mi>C</mi></math></span> a set of shortcuts, where each shortcut is a directed straight-line segment connecting two vertices of <em>P</em>. A shortcut hull of <em>P</em> is another polygon that encloses <em>P</em> and whose oriented boundary is composed of elements from <span><math><mi>C</mi></math></span>. We require <em>P</em><span> and the output shortcut hull to be weakly simple polygons<span>, which we define as a generalization of simple polygons. Shortcut hulls find their application in cartography, where a common task is to compute simplified representations of area features. We aim at a shortcut hull that has a small area and a small perimeter. Our optimization objective is to minimize a convex combination of these two criteria. If no holes in the shortcut hull are allowed, the problem admits a straight-forward solution via computation of shortest paths. For the more challenging case in which the shortcut hull may contain holes, we present a polynomial-time algorithm that is based on computing a constrained, weighted triangulation of the input polygon's exterior. We use this problem as a starting point for investigating further variants, e.g., restricting the number of edges or bends. We demonstrate that shortcut hulls can be used for the schematization of polygons.</span></span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let P be a polygon and a set of shortcuts, where each shortcut is a directed straight-line segment connecting two vertices of P. A shortcut hull of P is another polygon that encloses P and whose oriented boundary is composed of elements from . We require P and the output shortcut hull to be weakly simple polygons, which we define as a generalization of simple polygons. Shortcut hulls find their application in cartography, where a common task is to compute simplified representations of area features. We aim at a shortcut hull that has a small area and a small perimeter. Our optimization objective is to minimize a convex combination of these two criteria. If no holes in the shortcut hull are allowed, the problem admits a straight-forward solution via computation of shortest paths. For the more challenging case in which the shortcut hull may contain holes, we present a polynomial-time algorithm that is based on computing a constrained, weighted triangulation of the input polygon's exterior. We use this problem as a starting point for investigating further variants, e.g., restricting the number of edges or bends. We demonstrate that shortcut hulls can be used for the schematization of polygons.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.