Half-plane point retrieval queries with independent and dependent geometric uncertainties

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Rivka Gitik, Leo Joskowicz
{"title":"Half-plane point retrieval queries with independent and dependent geometric uncertainties","authors":"Rivka Gitik,&nbsp;Leo Joskowicz","doi":"10.1016/j.comgeo.2023.102021","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses a family of geometric half-plane retrieval queries of points in the plane in the presence of geometric uncertainty. The problems include exact and uncertain point sets and half-plane queries defined by an exact or uncertain line whose location uncertainties are independent or dependent and are defined by <em>k</em><span><span><span> real-valued parameters. Point coordinate uncertainties are modeled with the Linear Parametric Geometric Uncertainty Model (LPGUM), an expressive and computationally efficient worst-case, first order linear </span>approximation of geometric uncertainty that supports parametric dependencies between </span>point locations. We present an efficient </span><span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> time and space algorithm for computing the envelope of the LPGUM line that defines the half-plane query. For an exact line and an LPGUM <em>n</em> points set, we present an <span><math><mi>O</mi><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mo>+</mo><mi>m</mi><mi>k</mi><mo>)</mo></mrow></math></span> time query and <span><math><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mi>k</mi><mo>)</mo></mrow></math></span> space algorithm, where <em>m</em> is the number of LPGUM points on or above the half-plane line. For a LPGUM line and an exact points set, we present a <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>+</mo><mi>m</mi><mo>)</mo></mrow></math></span> time and <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></mrow></math></span><span> space approximation algorithm, where </span><span><math><mn>0</mn><mo>&lt;</mo><mi>ε</mi><mo>≤</mo><mn>1</mn></math></span> is the desired approximation error. For a LPGUM line and an LPGUM points set, we present two <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mo>)</mo></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>+</mo><mi>m</mi><mi>k</mi><mo>)</mo></mrow></math></span> and <span><math><mi>O</mi><mrow><mo>(</mo><mi>m</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mfrac><mrow><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi><mo>)</mo></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></mrow></math></span> time query and <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mo>(</mo><mi>n</mi><mi>k</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>k</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></mrow></math></span> space approximation algorithms for the independent and dependent case, respectively.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212300041X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses a family of geometric half-plane retrieval queries of points in the plane in the presence of geometric uncertainty. The problems include exact and uncertain point sets and half-plane queries defined by an exact or uncertain line whose location uncertainties are independent or dependent and are defined by k real-valued parameters. Point coordinate uncertainties are modeled with the Linear Parametric Geometric Uncertainty Model (LPGUM), an expressive and computationally efficient worst-case, first order linear approximation of geometric uncertainty that supports parametric dependencies between point locations. We present an efficient O(k2) time and space algorithm for computing the envelope of the LPGUM line that defines the half-plane query. For an exact line and an LPGUM n points set, we present an O(lognk+mk) time query and O(nk) space algorithm, where m is the number of LPGUM points on or above the half-plane line. For a LPGUM line and an exact points set, we present a O(k2+(klognloglogn)ε+m) time and O(n2logn+kε) space approximation algorithm, where 0<ε1 is the desired approximation error. For a LPGUM line and an LPGUM points set, we present two O(k2+(klognkloglognk)ε+mk) and O(mk2+(klognkloglognk)ε) time query and O((nk)2lognk+kε) space approximation algorithms for the independent and dependent case, respectively.

具有独立和依赖几何不确定性的半平面点检索查询
本文讨论了在存在几何不确定性的情况下平面中点的几何半平面检索查询族。该问题包括精确和不确定点集以及由精确或不确定线定义的半平面查询,该精确或不确定性线的位置不确定性是独立或依赖的,并且由k个实值参数定义。点坐标不确定性采用线性参数几何不确定性模型(LPGUM)建模,这是一种表达能力强、计算效率高的最坏情况下几何不确定性的一阶线性近似,支持点位置之间的参数相关性。我们提出了一种有效的O(k2)时间和空间算法,用于计算定义半平面查询的LPGUM线的包络。对于一条精确的直线和一个LPGUM n点集,我们给出了一个O(log⁡nk+mk)时间查询和O(nk)空间算法,其中m是半平面线上或上方的LPGUM点的数量。对于一条LPGUM线和一个精确的点集,我们给出了一个O(k2+(klog⁡nlog⁡日志⁡n) ε+m)时间和O(n2log⁡n+kε)空间近似算法,其中0<;ε≤1是所需的近似误差。对于LPGUM线和LPGUM点集,我们给出了两个O(k2+(klog⁡nklog⁡日志⁡nk)ε+mk)和O(mk2+(klog⁡nklog⁡日志⁡nk)ε)时间查询和O(((nk)2log⁡nk+kε)空间近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信