Colouring bottomless rectangles and arborescences

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Jean Cardinal , Kolja Knauer , Piotr Micek , Dömötör Pálvölgyi , Torsten Ueckerdt , Narmada Varadarajan
{"title":"Colouring bottomless rectangles and arborescences","authors":"Jean Cardinal ,&nbsp;Kolja Knauer ,&nbsp;Piotr Micek ,&nbsp;Dömötör Pálvölgyi ,&nbsp;Torsten Ueckerdt ,&nbsp;Narmada Varadarajan","doi":"10.1016/j.comgeo.2023.102020","DOIUrl":null,"url":null,"abstract":"<div><p>We study problems related to colouring families of bottomless rectangles in the plane, in an attempt to improve the <em>polychromatic k-colouring number</em> <span><math><msubsup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. This number is the smallest <em>m</em> such that any collection of bottomless rectangles can be <em>k</em>-coloured so that any <em>m</em>-fold covered point is covered by all <em>k</em> colours. We show that for many families of bottomless rectangles, such as unit-width bottomless rectangles, or bottomless rectangles whose left corners lie on a line, <span><math><msubsup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> is linear in <em>k</em>. We present the lower bound <span><math><msubsup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>≥</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> for general families.</p><p>We also investigate <em>semi-online</em> colouring algorithms, which need not colour each vertex immediately, but must maintain a proper colouring. We prove that for many sweeping orders, for any positive integers <span><math><mi>m</mi><mo>,</mo><mi>k</mi></math></span>, there is no semi-online algorithm that can <em>k</em>-colour bottomless rectangles presented in that order, so that any <em>m</em>-fold covered point is covered by at least two colours. This holds even for translates of quadrants, and is a corollary of a stronger result for arborescence colourings: Any semi-online colouring algorithm that colours an arborescence presented in post-order may produce arbitrarily long monochromatic paths.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000408","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study problems related to colouring families of bottomless rectangles in the plane, in an attempt to improve the polychromatic k-colouring number mk. This number is the smallest m such that any collection of bottomless rectangles can be k-coloured so that any m-fold covered point is covered by all k colours. We show that for many families of bottomless rectangles, such as unit-width bottomless rectangles, or bottomless rectangles whose left corners lie on a line, mk is linear in k. We present the lower bound mk2k1 for general families.

We also investigate semi-online colouring algorithms, which need not colour each vertex immediately, but must maintain a proper colouring. We prove that for many sweeping orders, for any positive integers m,k, there is no semi-online algorithm that can k-colour bottomless rectangles presented in that order, so that any m-fold covered point is covered by at least two colours. This holds even for translates of quadrants, and is a corollary of a stronger result for arborescence colourings: Any semi-online colouring algorithm that colours an arborescence presented in post-order may produce arbitrarily long monochromatic paths.

为无底矩形和树景着色
我们研究了与平面中无底矩形的着色族有关的问题,试图改进多色k着色数mk。这个数字是最小的m,使得任何无底矩形的集合都可以是k色的,使得任何m倍覆盖点都被所有k色覆盖。我们证明了对于许多无底矩形族,如单位宽度的无底矩形,或左角位于一条线上的无底长方形,mk在k中是线性的。我们给出了一般族的下界mk≥2k−1。我们还研究了半在线着色算法,该算法不需要立即为每个顶点着色,但必须保持适当的着色。我们证明了对于许多扫频阶,对于任何正整数m,k,不存在可以k色按该阶呈现的无底矩形的半在线算法,使得任何m次覆盖点都被至少两种颜色覆盖。这甚至适用于象限的平移,也是树状图着色更强结果的必然结果:任何对按后序呈现的树状图进行着色的半在线着色算法都可能产生任意长的单色路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信