Subquadratic algorithms for some 3Sum-hard geometric problems in the algebraic decision-tree model

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Boris Aronov , Mark de Berg , Jean Cardinal , Esther Ezra , John Iacono , Micha Sharir
{"title":"Subquadratic algorithms for some 3Sum-hard geometric problems in the algebraic decision-tree model","authors":"Boris Aronov ,&nbsp;Mark de Berg ,&nbsp;Jean Cardinal ,&nbsp;Esther Ezra ,&nbsp;John Iacono ,&nbsp;Micha Sharir","doi":"10.1016/j.comgeo.2022.101945","DOIUrl":null,"url":null,"abstract":"<div><p>We present subquadratic algorithms in the algebraic decision-tree model for several <span>3Sum</span>-hard geometric problems, all of which can be reduced to the following question: Given two sets <em>A</em>, <em>B</em>, each consisting of <em>n</em> pairwise disjoint segments in the plane, and a set <em>C</em> of <em>n</em> triangles in the plane, we want to count, for each triangle <span><math><mi>Δ</mi><mo>∈</mo><mi>C</mi></math></span>, the number of intersection points between the segments of <em>A</em> and those of <em>B</em> that lie in Δ. We present solutions in the algebraic decision-tree model whose cost is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>60</mn><mo>/</mo><mn>31</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span>, for any <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>.</p><p>Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal et al. (2021) <span>[3]</span>. A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the <em>order type</em> of the lines, a “handicap” that turns out to be beneficial for speeding up our algorithm.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000888","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present subquadratic algorithms in the algebraic decision-tree model for several 3Sum-hard geometric problems, all of which can be reduced to the following question: Given two sets A, B, each consisting of n pairwise disjoint segments in the plane, and a set C of n triangles in the plane, we want to count, for each triangle ΔC, the number of intersection points between the segments of A and those of B that lie in Δ. We present solutions in the algebraic decision-tree model whose cost is O(n60/31+ε), for any ε>0.

Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal et al. (2021) [3]. A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the order type of the lines, a “handicap” that turns out to be beneficial for speeding up our algorithm.

代数决策树模型中某些3Sum硬几何问题的次二次算法
我们在代数决策树模型中提出了几个3Sum硬几何问题的次二次算法,所有这些问题都可以归结为以下问题:给定两个集合A,B,每个集合由平面中的n个成对不相交的线段组成,以及平面中的一个由n个三角形组成的集合C,我们想对每个三角形Δ∈C计数,位于Δ中的A的线段和B的线段之间的交点的数量。我们给出了代价为O(n60/31+ε)的代数决策树模型中的解,对于任何ε>;0。我们的方法基于原始-对偶范围搜索机制,该机制利用了Agarwal等人最近开发的多级多项式划分机制。(2021)[3]。该过程的一个关键步骤是排列中的点位置的变体,比如平面中的线,这完全基于线的顺序类型,这是一个“障碍”,有利于加快我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信