Algorithms for radius-optimally augmenting trees in a metric space

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Joachim Gudmundsson , Yuan Sha
{"title":"Algorithms for radius-optimally augmenting trees in a metric space","authors":"Joachim Gudmundsson ,&nbsp;Yuan Sha","doi":"10.1016/j.comgeo.2023.102018","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>T</em> be a tree with <em>n</em> vertices in a metric space. We consider the problem of adding one shortcut edge to <em>T</em> to minimize the radius of the resulting graph.</p><p>For the <em>continuous</em> version of the problem where a center may be a point in the interior of an edge of the graph we give a linear time algorithm. In the case when the center is restricted to lie on a vertex, the <em>discrete</em> version, we give an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> expected time algorithm.</p><p>Previously linear-time algorithms were known for the special case when the input graph is a path.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212300038X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let T be a tree with n vertices in a metric space. We consider the problem of adding one shortcut edge to T to minimize the radius of the resulting graph.

For the continuous version of the problem where a center may be a point in the interior of an edge of the graph we give a linear time algorithm. In the case when the center is restricted to lie on a vertex, the discrete version, we give an O(nlogn) expected time algorithm.

Previously linear-time algorithms were known for the special case when the input graph is a path.

度量空间中半径最优扩充树的算法
设T是一个在度量空间中有n个顶点的树。我们考虑向T添加一条快捷边以最小化生成图的半径的问题。对于问题的连续版本,其中中心可能是图边缘内部的一个点,我们给出了一个线性时间算法。在中心被限制在一个顶点上的情况下,离散形式,我们给出了一个O(nlog⁡n) 预期时间算法。以前的线性时间算法对于输入图是路径的特殊情况是已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信