The constant of point–line incidence constructions

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Martin Balko , Adam Sheffer , Ruiwen Tang
{"title":"The constant of point–line incidence constructions","authors":"Martin Balko ,&nbsp;Adam Sheffer ,&nbsp;Ruiwen Tang","doi":"10.1016/j.comgeo.2023.102009","DOIUrl":null,"url":null,"abstract":"<div><p>We study a lower bound for the constant of the Szemerédi–Trotter theorem. In particular, we show that a recent infinite family of point-line configurations satisfies <span><math><mi>I</mi><mo>(</mo><mi>P</mi><mo>,</mo><mi>L</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>c</mi><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>|</mo><mi>P</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>|</mo><mi>L</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>, with <span><math><mi>c</mi><mo>≈</mo><mn>1.27</mn></math></span>. Our technique is based on studying a variety of properties of Euler's totient function. We also improve the current best constant for Elekes's construction from 1 to about 1.27. From an expository perspective, this is the first full analysis of the constant of Erdős's construction.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000299","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study a lower bound for the constant of the Szemerédi–Trotter theorem. In particular, we show that a recent infinite family of point-line configurations satisfies I(P,L)(c+o(1))|P|2/3|L|2/3, with c1.27. Our technique is based on studying a variety of properties of Euler's totient function. We also improve the current best constant for Elekes's construction from 1 to about 1.27. From an expository perspective, this is the first full analysis of the constant of Erdős's construction.

点-线关联构造的常数
我们研究了Szemerédi–Trotter定理常数的一个下界。特别地,我们证明了最近的无穷一族点线配置满足I(P,L)≥(c+o(1))|P|2/3|L|2/3,其中c≈1.27。我们的技术是基于对欧拉瞬变函数的各种性质的研究。我们还将Elekes结构的当前最佳常数从1提高到约1.27。从阐释的角度来看,这是第一次全面分析埃尔德斯结构的常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信