Fleur E.L. Kleijburg , Adil A. Safeer , Marc Baldus , Han A.B. Wösten
{"title":"Binding of micro-nutrients to the cell wall of the fungus Schizophyllum commune","authors":"Fleur E.L. Kleijburg , Adil A. Safeer , Marc Baldus , Han A.B. Wösten","doi":"10.1016/j.tcsw.2023.100108","DOIUrl":null,"url":null,"abstract":"<div><p>The cell wall fulfils several functions in the biology of fungi. For instance, it provides mechanical strength, interacts with the (a)biotic environment, and acts as a molecular sieve. Recently, it was shown that proteins and β-glucans in the cell wall of <em>Schizophyllum commune</em> bind Cu<sup>2+</sup>. We here show that the cell wall of this mushroom forming fungus also binds other (micro-)nutrients. Ca<sup>2+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, NO<sub>3</sub><sup>–</sup>, PO<sub>4</sub><sup>3-</sup>, and SO<sub>4</sub><sup>2-</sup> bound at levels > 1 mg per gram dry weight cell wall, while binding of BO<sub>3</sub><sup>-</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup> and MoO<sub>4</sub><sup>2-</sup> was lower. Sorption of Ca<sup>2+</sup>, Mn<sup>2+</sup>, Zn<sup>2+</sup> and PO<sub>4</sub><sup>3-</sup> was promoted at alkaline pH. These compounds as well as BO<sub>3</sub><sup>3-</sup>, Cu<sup>2+</sup>, Mg<sup>2+</sup>, NO<sub>3</sub><sup>–</sup>, and SO<sub>4</sub><sup>2-</sup> that had bound at pH 4, 6, or 8 could be released from the cell wall at pH 4 with a maximum efficiency of 46–93 %. Solid-state NMR spectroscopy showed that the metals had the same binding sites as Cu<sup>2+</sup> when a low concentration of this ion is used. Moreover, data indicate that anions bind to the cell wall as well as to the metal ions. Together, it is shown that the cell wall of <em>S. commune</em> binds various (micro-)nutrients and that this binding is higher than the uptake by hyphae. The binding to the cell wall may be used as a storage mechanism or may reduce availability of these molecules to competitors or prevent toxic influx in the cytoplasm.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"10 ","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233023000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 1
Abstract
The cell wall fulfils several functions in the biology of fungi. For instance, it provides mechanical strength, interacts with the (a)biotic environment, and acts as a molecular sieve. Recently, it was shown that proteins and β-glucans in the cell wall of Schizophyllum commune bind Cu2+. We here show that the cell wall of this mushroom forming fungus also binds other (micro-)nutrients. Ca2+, Mg2+, Mn2+, NO3–, PO43-, and SO42- bound at levels > 1 mg per gram dry weight cell wall, while binding of BO3-, Cu2+, Zn2+ and MoO42- was lower. Sorption of Ca2+, Mn2+, Zn2+ and PO43- was promoted at alkaline pH. These compounds as well as BO33-, Cu2+, Mg2+, NO3–, and SO42- that had bound at pH 4, 6, or 8 could be released from the cell wall at pH 4 with a maximum efficiency of 46–93 %. Solid-state NMR spectroscopy showed that the metals had the same binding sites as Cu2+ when a low concentration of this ion is used. Moreover, data indicate that anions bind to the cell wall as well as to the metal ions. Together, it is shown that the cell wall of S. commune binds various (micro-)nutrients and that this binding is higher than the uptake by hyphae. The binding to the cell wall may be used as a storage mechanism or may reduce availability of these molecules to competitors or prevent toxic influx in the cytoplasm.