Characterizing the role of phosphatidylglycerol-phosphate phosphatases in Acinetobacter baumannii cell envelope biogenesis and antibiotic resistance

Q1 Immunology and Microbiology
Maoge Zang , Alice Ascari , Felise G. Adams , Saleh Alquethamy , Bart A. Eijkelkamp
{"title":"Characterizing the role of phosphatidylglycerol-phosphate phosphatases in Acinetobacter baumannii cell envelope biogenesis and antibiotic resistance","authors":"Maoge Zang ,&nbsp;Alice Ascari ,&nbsp;Felise G. Adams ,&nbsp;Saleh Alquethamy ,&nbsp;Bart A. Eijkelkamp","doi":"10.1016/j.tcsw.2022.100092","DOIUrl":null,"url":null,"abstract":"<div><p>The dissemination of multi-drug resistant <em>Acinetobacter baumannii</em> threatens global healthcare systems and necessitates the development of novel therapeutic options. The Gram-negative bacterial cell envelope provides a first defensive barrier against antimicrobial assault. Essential components of this multi-layered complex are the phospholipid-rich membranes. Phosphatidylglycerol phosphate (PGP) phosphatases are responsible for a key step in the biosynthesis of a major phospholipid species, phosphatidylglycerol (PG), but these enzymes have also been implicated in the biogenesis of other cell envelope components. Our bioinformatics analyses identified two putative PGP candidates in the <em>A. baumannii</em> genome, PgpA and PgpB. Phospholipid analyses of isogenic <em>pgpA</em> mutants in two distinct <em>A. baumannii</em> strains revealed a shift in the desaturation levels of phosphatidylethanolamine (PE) phospholipid species, possibly due to the activation of the phospholipid desaturase DesA. We also investigated the impact of the inner membrane phosphatases on other cell envelope components, which revealed a role of PgpB in the maintenance of the <em>A. baumannii</em> peptidoglycan layer, and consequently carbapenem resistance. Collectively, this work provides novel insights into the roles of PGP phosphatases on the global lipidomic landscape of <em>A. baumannii</em> and their interconnectivity with the biogenesis of other cell envelope components. The non-essentiality of these candidates exemplifies metabolic versatility of <em>A. baumannii</em>, which is believed to be key to its success as global pathogen.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"9 ","pages":"Article 100092"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233022000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 5

Abstract

The dissemination of multi-drug resistant Acinetobacter baumannii threatens global healthcare systems and necessitates the development of novel therapeutic options. The Gram-negative bacterial cell envelope provides a first defensive barrier against antimicrobial assault. Essential components of this multi-layered complex are the phospholipid-rich membranes. Phosphatidylglycerol phosphate (PGP) phosphatases are responsible for a key step in the biosynthesis of a major phospholipid species, phosphatidylglycerol (PG), but these enzymes have also been implicated in the biogenesis of other cell envelope components. Our bioinformatics analyses identified two putative PGP candidates in the A. baumannii genome, PgpA and PgpB. Phospholipid analyses of isogenic pgpA mutants in two distinct A. baumannii strains revealed a shift in the desaturation levels of phosphatidylethanolamine (PE) phospholipid species, possibly due to the activation of the phospholipid desaturase DesA. We also investigated the impact of the inner membrane phosphatases on other cell envelope components, which revealed a role of PgpB in the maintenance of the A. baumannii peptidoglycan layer, and consequently carbapenem resistance. Collectively, this work provides novel insights into the roles of PGP phosphatases on the global lipidomic landscape of A. baumannii and their interconnectivity with the biogenesis of other cell envelope components. The non-essentiality of these candidates exemplifies metabolic versatility of A. baumannii, which is believed to be key to its success as global pathogen.

磷脂酰甘油磷酸磷酸酶在鲍曼不动杆菌细胞包膜生物发生和抗生素耐药性中的作用
多重耐药鲍曼不动杆菌的传播威胁着全球医疗系统,需要开发新的治疗方案。革兰氏阴性细菌细胞包膜提供了对抗微生物攻击的第一防御屏障。这种多层复合物的基本成分是富含磷脂的膜。磷脂酰甘油磷酸(PGP)磷酸酶是主要磷脂物种磷脂酰甘油(PG)生物合成的关键步骤,但这些酶也与其他细胞包膜成分的生物发生有关。我们的生物信息学分析在鲍曼菌基因组中确定了两个推定的PGP候选者,PgpA和PgpB。对两个不同鲍曼不动杆菌菌株中等基因pgpA突变体的磷脂分析显示,磷脂酰乙醇胺(PE)磷脂物种的去饱和水平发生了变化,这可能是由于磷脂去饱和酶DesA的激活。我们还研究了内膜磷酸酶对其他细胞包膜成分的影响,这揭示了PgpB在维持鲍曼杆菌肽聚糖层中的作用,从而对碳青霉烯产生耐药性。总之,这项工作为PGP磷酸酶在鲍曼不动杆菌全球脂质组学景观中的作用及其与其他细胞包膜成分生物发生的相互关系提供了新的见解。这些候选者的非本质性证明了鲍曼不动杆菌的代谢多样性,这被认为是其作为全球病原体成功的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Surface
Cell Surface Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
6.10
自引率
0.00%
发文量
18
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信