Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM

IF 3.56 Q1 Medicine
David A Welch, B Layla Mehdi, Hannah J Hatchell, Roland Faller, James E Evans, Nigel D Browning
{"title":"Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM","authors":"David A Welch,&nbsp;B Layla Mehdi,&nbsp;Hannah J Hatchell,&nbsp;Roland Faller,&nbsp;James E Evans,&nbsp;Nigel D Browning","doi":"10.1186/s40679-014-0002-2","DOIUrl":null,"url":null,"abstract":"<p>Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution <i>in</i>-<i>situ</i> electrochemical fluid cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. Classical models are found to greatly differ from MD in predicted concentration profiles. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulation together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"1 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-014-0002-2","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-014-0002-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 39

Abstract

Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical fluid cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. Classical models are found to greatly differ from MD in predicted concentration profiles. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulation together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.

Abstract Image

利用分子动力学方法对双电层进行了定量分析,并对其在原位透射电镜中直接观察的潜力进行了研究
了解电池中电极-电解质界面发生的基本过程将在下一代储能技术的发展中发挥关键作用。电极-电解质界面最基本的方面之一是电双层(EDL)。随着扫描透射电镜(STEM)高空间分辨率原位电化学流体电池的发展,我们有可能直接观察EDL的形成和动力学。本文利用经典模型和原子分子动力学(MD)模拟预测了电解液中的电解质结构。发现经典模型在预测浓度分布方面与MD有很大不同。因此,为了准确预测电极-电解质界面的STEM图像,必须使用MD。将MD和图像模拟结合起来用于高对比度电解质(高原子序数CsCl电解质),确定了对于光滑界面,EDL内的浓度分布应该在实验中可见。当考虑到诸如粗糙界面和低z电解质(如锂离子电池中使用的电解质)等正常实验参数时,EDL的观察似乎更加困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信