Learning remaining useful life with incomplete health information: A case study on battery deterioration assessment

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2023-09-29 DOI:10.1016/j.array.2023.100321
Luciano Sánchez , Nahuel Costa , José Otero , David Anseán , Inés Couso
{"title":"Learning remaining useful life with incomplete health information: A case study on battery deterioration assessment","authors":"Luciano Sánchez ,&nbsp;Nahuel Costa ,&nbsp;José Otero ,&nbsp;David Anseán ,&nbsp;Inés Couso","doi":"10.1016/j.array.2023.100321","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a method for developing equipment lifespan estimators that combine physical information and numerical data, both of which may be incomplete. Physical information may not have a uniform fit to all experimental data, and health information may only be available at the initial and final periods. To address these issues, a procedure is defined to adjust the model to different subsets of available data, constrained by feasible trajectories in the health status space. Additionally, a new health model for rechargeable lithium batteries is proposed, and a use case is presented to demonstrate its efficacy. The optimistic (max–max) strategy is found to be the most suitable for diagnosing battery lifetime, based on the results.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005623000462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a method for developing equipment lifespan estimators that combine physical information and numerical data, both of which may be incomplete. Physical information may not have a uniform fit to all experimental data, and health information may only be available at the initial and final periods. To address these issues, a procedure is defined to adjust the model to different subsets of available data, constrained by feasible trajectories in the health status space. Additionally, a new health model for rechargeable lithium batteries is proposed, and a use case is presented to demonstrate its efficacy. The optimistic (max–max) strategy is found to be the most suitable for diagnosing battery lifetime, based on the results.

使用不完整的健康信息了解剩余使用寿命:电池劣化评估案例研究
这项研究提出了一种开发设备寿命估算器的方法,该方法结合了物理信息和数值数据,这两种数据可能都是不完整的。身体信息可能不适合所有实验数据,健康信息可能只在最初和最后阶段可用。为了解决这些问题,定义了一个程序,以根据可用数据的不同子集调整模型,并受健康状态空间中可行轨迹的约束。此外,还提出了一种新的可充电锂电池健康模型,并给出了一个用例来证明其有效性。根据研究结果,乐观(最大-最大)策略被认为是最适合诊断电池寿命的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信