ML meets MLn: Machine learning in ligand promoted homogeneous catalysis

Jonathan D. Hirst , Samuel Boobier , Jennifer Coughlan , Jessica Streets , Philippa L. Jacob , Oska Pugh , Ender Özcan , Simon Woodward
{"title":"ML meets MLn: Machine learning in ligand promoted homogeneous catalysis","authors":"Jonathan D. Hirst ,&nbsp;Samuel Boobier ,&nbsp;Jennifer Coughlan ,&nbsp;Jessica Streets ,&nbsp;Philippa L. Jacob ,&nbsp;Oska Pugh ,&nbsp;Ender Özcan ,&nbsp;Simon Woodward","doi":"10.1016/j.aichem.2023.100006","DOIUrl":null,"url":null,"abstract":"<div><p>The benefits of using machine learning approaches in the design, optimisation and understanding of homogeneous catalytic processes are being increasingly realised. We focus on the understanding and implementation of key concepts, which serve as conduits to more advanced chemical machine learning literature, much of which is (presently) outside the area of homogeneous catalysis. Potential pitfalls in the ‘workflow’ procedures needed in the machine learning process are identified and all the examples provided are in a chemical sciences context, including several from ‘real world’ catalyst systems. Finally, potential areas of expansion and impact for machine learning in homogeneous catalysis in the future are considered.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The benefits of using machine learning approaches in the design, optimisation and understanding of homogeneous catalytic processes are being increasingly realised. We focus on the understanding and implementation of key concepts, which serve as conduits to more advanced chemical machine learning literature, much of which is (presently) outside the area of homogeneous catalysis. Potential pitfalls in the ‘workflow’ procedures needed in the machine learning process are identified and all the examples provided are in a chemical sciences context, including several from ‘real world’ catalyst systems. Finally, potential areas of expansion and impact for machine learning in homogeneous catalysis in the future are considered.

ML与MLn相遇:配体促进均相催化的机器学习
在均匀催化过程的设计、优化和理解中使用机器学习方法的好处正在日益实现。我们专注于理解和实施关键概念,这些概念是通往更先进的化学机器学习文献的渠道,其中大部分(目前)不在均相催化领域。识别了机器学习过程中所需的“工作流程”程序中的潜在陷阱,提供的所有示例都是在化学科学背景下提供的,包括来自“现实世界”催化剂系统的几个示例。最后,考虑了机器学习在均相催化领域未来的潜在扩展和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信