Deep learning-based rigid motion correction for magnetic resonance imaging: A survey

Yuchou Chang , Zhiqiang Li , Gulfam Saju , Hui Mao , Tianming Liu
{"title":"Deep learning-based rigid motion correction for magnetic resonance imaging: A survey","authors":"Yuchou Chang ,&nbsp;Zhiqiang Li ,&nbsp;Gulfam Saju ,&nbsp;Hui Mao ,&nbsp;Tianming Liu","doi":"10.1016/j.metrad.2023.100001","DOIUrl":null,"url":null,"abstract":"<div><p>Physiological and physical motions of the subjects, e.g., patients, are the primary sources of image artifacts in magnetic resonance imaging (MRI), causing geometric distortion, blurring, low signal-to-noise ratio, or ghosting. To overcome motion artifacts, various deep learning strategies, and models have been investigated to enable retrospective and prospective motion correction for MRI. This review article provides a survey on current deep learning-based rigid motion correction methods that have been used for MRI. Also, deep learning motion correction methods are compared to conventional motion correction methods and hybrid methods. Furthermore, we discuss the advantages and limitations of the current deep learning motion correction methods, leading to some suggestions for the future development of deep learning motion correction methods and their potential applications in improving clinical MRI.</p></div>","PeriodicalId":100921,"journal":{"name":"Meta-Radiology","volume":"1 1","pages":"Article 100001"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta-Radiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950162823000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Physiological and physical motions of the subjects, e.g., patients, are the primary sources of image artifacts in magnetic resonance imaging (MRI), causing geometric distortion, blurring, low signal-to-noise ratio, or ghosting. To overcome motion artifacts, various deep learning strategies, and models have been investigated to enable retrospective and prospective motion correction for MRI. This review article provides a survey on current deep learning-based rigid motion correction methods that have been used for MRI. Also, deep learning motion correction methods are compared to conventional motion correction methods and hybrid methods. Furthermore, we discuss the advantages and limitations of the current deep learning motion correction methods, leading to some suggestions for the future development of deep learning motion correction methods and their potential applications in improving clinical MRI.

Abstract Image

基于深度学习的磁共振成像刚性运动校正研究综述
受试者(例如患者)的生理和物理运动是磁共振成像(MRI)中图像伪影的主要来源,导致几何失真、模糊、低信噪比或重影。为了克服运动伪影,已经研究了各种深度学习策略和模型,以实现MRI的回顾性和前瞻性运动校正。这篇综述文章对目前用于MRI的基于深度学习的刚性运动校正方法进行了综述。此外,将深度学习运动校正方法与传统的运动校正方法和混合方法进行了比较。此外,我们讨论了当前深度学习运动校正方法的优势和局限性,为深度学习运动纠正方法的未来发展及其在改进临床MRI中的潜在应用提出了一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信