Jian Yang , Liuqin Huang , Weiyu She , Geng Wu , Yunyang Wan , Hailiang Dong , Rosalie K. Chu , Nikola Tolic , Hongchen Jiang
{"title":"Compositional changes of dissolved organic molecules along water flow and their influencing factors in the Three Gorges Reservoir","authors":"Jian Yang , Liuqin Huang , Weiyu She , Geng Wu , Yunyang Wan , Hailiang Dong , Rosalie K. Chu , Nikola Tolic , Hongchen Jiang","doi":"10.1016/j.chemgeo.2023.121741","DOIUrl":null,"url":null,"abstract":"<div><p><span>Molecular composition of dissolved organic matter<span> (DOM) and its influencing factors in river reservoirs remains elusive. Here, molecular compositions of DOM, bacterial community structures, and water physiochemistry were investigated in the field and microcosm samples of the Three Gorges Reservoir (TGR). The results showed that DOM molecular compositions were significantly (R</span></span><sup>2</sup> = 0.245, <em>p</em> < 0.001) correlated with bacterial community structures in the studied field samples, suggesting that bacteria may actively interact with DOM molecules. The molecular compositions of DOM in the studied field samples were significantly (<em>p</em> < 0.05) affected by the distance between the sample sites and the Three Gorges Dam and by bacterial groups of <em>Actinobacteria</em> and <em>Alphaproteobacteria</em>, suggesting that both hydrological and bacterial processes may contribute to the variation in DOM molecular composition in the TGR water. Furthermore, microcosm experiments demonstrated that both microbial and abiotic processes may transform and/or produce DOM in the TGR, thereby affecting DOM molecular composition. Microbial process increased the average aromaticity index and decreased the carbon number of DOM molecules with increasing incubation duration; whereas average oxygen number, double bond equivalent, and oxidation state of carbon of DOM molecules increased during the first 14 days of incubation and began to decrease thereafter. Taken together, this study expands our understanding of the impact of microbial process on the DOM molecular composition in reservoir ecosystems, and has great implications for carbon cycling in major rivers.</p></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"639 ","pages":"Article 121741"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254123004412","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular composition of dissolved organic matter (DOM) and its influencing factors in river reservoirs remains elusive. Here, molecular compositions of DOM, bacterial community structures, and water physiochemistry were investigated in the field and microcosm samples of the Three Gorges Reservoir (TGR). The results showed that DOM molecular compositions were significantly (R2 = 0.245, p < 0.001) correlated with bacterial community structures in the studied field samples, suggesting that bacteria may actively interact with DOM molecules. The molecular compositions of DOM in the studied field samples were significantly (p < 0.05) affected by the distance between the sample sites and the Three Gorges Dam and by bacterial groups of Actinobacteria and Alphaproteobacteria, suggesting that both hydrological and bacterial processes may contribute to the variation in DOM molecular composition in the TGR water. Furthermore, microcosm experiments demonstrated that both microbial and abiotic processes may transform and/or produce DOM in the TGR, thereby affecting DOM molecular composition. Microbial process increased the average aromaticity index and decreased the carbon number of DOM molecules with increasing incubation duration; whereas average oxygen number, double bond equivalent, and oxidation state of carbon of DOM molecules increased during the first 14 days of incubation and began to decrease thereafter. Taken together, this study expands our understanding of the impact of microbial process on the DOM molecular composition in reservoir ecosystems, and has great implications for carbon cycling in major rivers.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.