Boosting Zn||I2 Battery’s Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenshuo Shang, Qiang Li, Fuyi Jiang, Bingkun Huang, Jisheng Song, Shan Yun, Xuan Liu, Hideo Kimura, Jianjun Liu, Litao Kang
{"title":"Boosting Zn||I2 Battery’s Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer","authors":"Wenshuo Shang,&nbsp;Qiang Li,&nbsp;Fuyi Jiang,&nbsp;Bingkun Huang,&nbsp;Jisheng Song,&nbsp;Shan Yun,&nbsp;Xuan Liu,&nbsp;Hideo Kimura,&nbsp;Jianjun Liu,&nbsp;Litao Kang","doi":"10.1007/s40820-022-00825-5","DOIUrl":null,"url":null,"abstract":"<p>The intrinsically safe Zn||I<sub>2</sub> battery, one of the leading candidates aiming to replace traditional Pb-acid batteries, is still seriously suffering from short shelf and cycling lifespan, due to the uncontrolled I<sub>3</sub><sup>−</sup>-shuttling and dynamic parasitic reactions on Zn anodes. Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes, modifying Zn anodes’ surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes. Herein, a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes. The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn<sup>2+</sup>, while blocking anions and electrolyte from passing through. This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge, anode corrosion/passivation, and Zn dendrite growth, awarding the Zn||I<sub>2</sub> batteries with ultra-long cycle life (91.92% capacity retention after 5600 cycles at 2 A g<sup>−1</sup>), high coulombic efficiencies (99.76% in average) and large capacity (203–196 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>). This work provides a highly affordable approach for the construction of high-performance Zn-I<sub>2</sub> aqueous batteries.</p>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00825-5.pdf","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-022-00825-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 36

Abstract

The intrinsically safe Zn||I2 battery, one of the leading candidates aiming to replace traditional Pb-acid batteries, is still seriously suffering from short shelf and cycling lifespan, due to the uncontrolled I3-shuttling and dynamic parasitic reactions on Zn anodes. Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes, modifying Zn anodes’ surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes. Herein, a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes. The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn2+, while blocking anions and electrolyte from passing through. This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge, anode corrosion/passivation, and Zn dendrite growth, awarding the Zn||I2 batteries with ultra-long cycle life (91.92% capacity retention after 5600 cycles at 2 A g−1), high coulombic efficiencies (99.76% in average) and large capacity (203–196 mAh g−1 at 0.2 A g−1). This work provides a highly affordable approach for the construction of high-performance Zn-I2 aqueous batteries.

涂覆沸石基阳离子交换保护层提高Zn / I2电池性能
本质安全型锌I2电池是取代传统铅酸电池的主要候选电池之一,但由于锌阳极上不受控制的I3−穿梭和动态寄生反应,其货架寿命和循环寿命仍然很短。考虑到几乎所有这些有害过程都终止于锌阳极表面,在锌阳极表面修饰保护层应该是抑制这些过程最直接和彻底的方法之一。本文设计了一种基于易溶沸石的阳离子交换保护层,以全面抑制Zn阳极上的不利寄生反应。沸石晶格中的负电荷空腔为Zn2+提供了高度可达的迁移通道,同时阻挡了阴离子和电解质的通过。这种低成本的阳离子交换保护层可以同时抑制自放电、阳极腐蚀/钝化和Zn枝晶生长,使Zn| I2电池具有超长循环寿命(在2 A g−1条件下5600次循环后容量保持率为91.92%)、高库仑效率(平均99.76%)和大容量(0.2 A g−1条件下203-196 mAh g−1)。这项工作为构建高性能锌- i2水性电池提供了一种经济实惠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信