Lipschitz and Wadge binary games in second order arithmetic

IF 0.6 2区 数学 Q2 LOGIC
Andrés Cordón-Franco , F. Félix Lara-Martín , Manuel J.S. Loureiro
{"title":"Lipschitz and Wadge binary games in second order arithmetic","authors":"Andrés Cordón-Franco ,&nbsp;F. Félix Lara-Martín ,&nbsp;Manuel J.S. Loureiro","doi":"10.1016/j.apal.2023.103301","DOIUrl":null,"url":null,"abstract":"<div><p>We present a detailed formalization of Lipschitz and Wadge games in the context of second order arithmetic and we investigate the logical strength of Lipschitz and Wadge determinacy, and the tightly related Semi-Linear Ordering principle, for the first levels of the Hausdorff difference hierarchy in the Cantor space. As a result, we obtain characterizations of <span><math><msub><mrow><mi>WKL</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ACA</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in terms of these determinacy principles.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"174 9","pages":"Article 103301"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223000581","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

Abstract

We present a detailed formalization of Lipschitz and Wadge games in the context of second order arithmetic and we investigate the logical strength of Lipschitz and Wadge determinacy, and the tightly related Semi-Linear Ordering principle, for the first levels of the Hausdorff difference hierarchy in the Cantor space. As a result, we obtain characterizations of WKL0 and ACA0 in terms of these determinacy principles.

二阶算术的Lipschitz和Wadge二进制对策
在二阶算术的背景下,我们给出了Lipschitz和Wadge对策的详细形式化,并研究了Cantor空间中Hausdorff差分层次的一阶的Lipschitz-Wadge确定性的逻辑强度,以及紧密相关的半线性排序原理。结果,我们根据这些确定性原理得到了WKL0和ACA0的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信