{"title":"Krull dimension in set theory","authors":"Jindřich Zapletal","doi":"10.1016/j.apal.2023.103299","DOIUrl":null,"url":null,"abstract":"<div><p>For every number <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the hypergraph on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of arity four consisting of all non-degenerate Euclidean rectangles. It is consistent with ZF+DC set theory that the chromatic number of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is countable while that of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is not.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223000568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
For every number , let be the hypergraph on of arity four consisting of all non-degenerate Euclidean rectangles. It is consistent with ZF+DC set theory that the chromatic number of is countable while that of is not.