When quantum annealing meets multitasking: Potentials, challenges and opportunities

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2023-03-01 DOI:10.1016/j.array.2023.100282
Tian Huang , Yongxin Zhu , Rick Siow Mong Goh , Tao Luo
{"title":"When quantum annealing meets multitasking: Potentials, challenges and opportunities","authors":"Tian Huang ,&nbsp;Yongxin Zhu ,&nbsp;Rick Siow Mong Goh ,&nbsp;Tao Luo","doi":"10.1016/j.array.2023.100282","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computers have provided a promising tool for tackling NP hard problems. However, most of the existing work on quantum annealers assumes exclusive access to all resources available in a quantum annealer. This is not resource efficient if a task consumes only a small part of an annealer and leaves the rest wasted. We ask if we can run multiple tasks in parallel or concurrently on an annealer, just like the multitasking capability of a classical general-purpose processor. By far, multitasking is not natively supported by any of the existing annealers. In this paper, we explore Multitasking in Quantum Annealer (QAMT) by identifying the parallelism in a quantum annealer from the aspect of space and time. Based on commercialised quantum annealers from D-Wave, we propose a realisation scheme for QAMT, which packs multiple tasks into a quantum machine instruction (QMI) and uses predefined sampling time to emulate task preemption. We enumerate a few scheduling algorithms that match well with QAMT and discuss the challenges in QAMT. To demonstrate the potential of QAMT, we simulate a quantum annealing system, implement a demo QAMT scheduling algorithm, and evaluate the algorithm. Experimental results suggest that there is great potential in multitasking in quantum annealing.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"17 ","pages":"Article 100282"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005623000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computers have provided a promising tool for tackling NP hard problems. However, most of the existing work on quantum annealers assumes exclusive access to all resources available in a quantum annealer. This is not resource efficient if a task consumes only a small part of an annealer and leaves the rest wasted. We ask if we can run multiple tasks in parallel or concurrently on an annealer, just like the multitasking capability of a classical general-purpose processor. By far, multitasking is not natively supported by any of the existing annealers. In this paper, we explore Multitasking in Quantum Annealer (QAMT) by identifying the parallelism in a quantum annealer from the aspect of space and time. Based on commercialised quantum annealers from D-Wave, we propose a realisation scheme for QAMT, which packs multiple tasks into a quantum machine instruction (QMI) and uses predefined sampling time to emulate task preemption. We enumerate a few scheduling algorithms that match well with QAMT and discuss the challenges in QAMT. To demonstrate the potential of QAMT, we simulate a quantum annealing system, implement a demo QAMT scheduling algorithm, and evaluate the algorithm. Experimental results suggest that there is great potential in multitasking in quantum annealing.

当量子退火遇上多任务处理:潜力、挑战与机遇
量子计算机为解决NP难题提供了一种很有前途的工具。然而,大多数现有的量子退火器工作都假设对量子退火器中所有可用资源的独占访问。如果一个任务只消耗退火器的一小部分,而其余部分被浪费,那么这就不是资源效率。我们问我们是否可以在退火器上并行或并发运行多个任务,就像经典通用处理器的多任务处理能力一样。到目前为止,任何现有的退火器都不支持多任务处理。在本文中,我们通过从空间和时间的角度识别量子退火器中的并行性来探索量子退火器(QAMT)中的多任务。基于D-Wave的商业化量子退火器,我们提出了一种QAMT的实现方案,该方案将多个任务打包到量子机器指令(QMI)中,并使用预定义的采样时间来模拟任务抢占。我们列举了一些与QAMT匹配良好的调度算法,并讨论了QAMT中的挑战。为了展示QAMT的潜力,我们模拟了一个量子退火系统,实现了一个演示的QAMT调度算法,并对该算法进行了评估。实验结果表明,量子退火中的多任务处理具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信