Bart E.K.S. Swinnen , Mariëlle J. Stam , Arthur W.G. Buijink , Martijn G.J. de Neeling , Peter R. Schuurman , Rob M.A. de Bie , Martijn Beudel
{"title":"Employing LFP recording to optimize stimulation location and amplitude in chronic DBS for Parkinson’s disease: A proof-of-concept pilot study","authors":"Bart E.K.S. Swinnen , Mariëlle J. Stam , Arthur W.G. Buijink , Martijn G.J. de Neeling , Peter R. Schuurman , Rob M.A. de Bie , Martijn Beudel","doi":"10.1016/j.jdbs.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Parkinson patients with chronic DBS routinely receive sensing-enabled implantable pulse generators upon battery replacement. Here we aimed to assess whether and/or how local field potential based reprogramming may be of use in this population.</p></div><div><h3>Methods</h3><p>In four Parkinson patients on chronic treatment with bilateral STN-DBS and implanted with the Percept™ PC implantable pulse generator, we employed an approach to select stimulation contacts and amplitudes based on beta-activity. When applicable, the effect of parameter adjustments on DBS effectiveness and DBS-induced side effects was assessed.</p></div><div><h3>Results</h3><p>In one out of eight electrodes, the LFP-guided contact was different from the clinically determined one. Beta-based therapeutic windows could be defined in five out of eight electrodes. LFP-guided parameter adjustments were performed in two patients, resulting in improved motor fluctuations and decreased stimulation-induced side effects respectively.</p></div><div><h3>Discussion</h3><p>LFP-guided DBS reprogramming has the potential to improve effectiveness and decrease side effects in selected cases. Prospective controlled research is required to assess the clinical usefulness of LFP-guided DBS reprogramming.</p></div>","PeriodicalId":100359,"journal":{"name":"Deep Brain Stimulation","volume":"2 ","pages":"Pages 1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Brain Stimulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949669123000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Objectives
Parkinson patients with chronic DBS routinely receive sensing-enabled implantable pulse generators upon battery replacement. Here we aimed to assess whether and/or how local field potential based reprogramming may be of use in this population.
Methods
In four Parkinson patients on chronic treatment with bilateral STN-DBS and implanted with the Percept™ PC implantable pulse generator, we employed an approach to select stimulation contacts and amplitudes based on beta-activity. When applicable, the effect of parameter adjustments on DBS effectiveness and DBS-induced side effects was assessed.
Results
In one out of eight electrodes, the LFP-guided contact was different from the clinically determined one. Beta-based therapeutic windows could be defined in five out of eight electrodes. LFP-guided parameter adjustments were performed in two patients, resulting in improved motor fluctuations and decreased stimulation-induced side effects respectively.
Discussion
LFP-guided DBS reprogramming has the potential to improve effectiveness and decrease side effects in selected cases. Prospective controlled research is required to assess the clinical usefulness of LFP-guided DBS reprogramming.