Systematic review of data-centric approaches in artificial intelligence and machine learning

Prerna Singh
{"title":"Systematic review of data-centric approaches in artificial intelligence and machine learning","authors":"Prerna Singh","doi":"10.1016/j.dsm.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) relies on data and algorithms. State-of-the-art (SOTA) AI smart algorithms have been developed to improve the performance of AI-oriented structures. However, model-centric approaches are limited by the absence of high-quality data. Data-centric AI is an emerging approach for solving machine learning (ML) problems. It is a collection of various data manipulation techniques that allow ML practitioners to systematically improve the quality of the data used in an ML pipeline. However, data-centric AI approaches are not well documented. Researchers have conducted various experiments without a clear set of guidelines. This survey highlights six major data-centric AI aspects that researchers are already using to intentionally or unintentionally improve the quality of AI systems. These include big data quality assessment, data preprocessing, transfer learning, semi-supervised learning, machine ​learning ​operations (MLOps), and the effect of adding more data. In addition, it highlights recent data-centric techniques adopted by ML practitioners. We addressed how adding data might harm datasets and how HoloClean can be used to restore and clean them. Finally, we discuss the causes of technical debt in AI. Technical debt builds up when software design and implementation decisions run into “or outright collide with” business goals and timelines. This survey lays the groundwork for future data-centric AI discussions by summarizing various data-centric approaches.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764923000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial intelligence (AI) relies on data and algorithms. State-of-the-art (SOTA) AI smart algorithms have been developed to improve the performance of AI-oriented structures. However, model-centric approaches are limited by the absence of high-quality data. Data-centric AI is an emerging approach for solving machine learning (ML) problems. It is a collection of various data manipulation techniques that allow ML practitioners to systematically improve the quality of the data used in an ML pipeline. However, data-centric AI approaches are not well documented. Researchers have conducted various experiments without a clear set of guidelines. This survey highlights six major data-centric AI aspects that researchers are already using to intentionally or unintentionally improve the quality of AI systems. These include big data quality assessment, data preprocessing, transfer learning, semi-supervised learning, machine ​learning ​operations (MLOps), and the effect of adding more data. In addition, it highlights recent data-centric techniques adopted by ML practitioners. We addressed how adding data might harm datasets and how HoloClean can be used to restore and clean them. Finally, we discuss the causes of technical debt in AI. Technical debt builds up when software design and implementation decisions run into “or outright collide with” business goals and timelines. This survey lays the groundwork for future data-centric AI discussions by summarizing various data-centric approaches.

系统回顾人工智能和机器学习中以数据为中心的方法
人工智能依赖于数据和算法。已经开发了最先进的(SOTA)AI智能算法来提高面向AI的结构的性能。然而,以模型为中心的方法受到缺乏高质量数据的限制。以数据为中心的人工智能是解决机器学习(ML)问题的一种新兴方法。它是各种数据操作技术的集合,使ML从业者能够系统地提高ML管道中使用的数据的质量。然而,以数据为中心的人工智能方法并没有得到很好的证明。研究人员在没有明确指导方针的情况下进行了各种实验。这项调查强调了六个主要的以数据为中心的人工智能方面,研究人员已经在有意或无意地利用这些方面来提高人工智能系统的质量。其中包括大数据质量评估、数据预处理、迁移学习、半监督学习、机器​学习​操作(MLOps)以及添加更多数据的效果。此外,它还强调了ML从业者最近采用的以数据为中心的技术。我们讨论了添加数据可能会如何损害数据集,以及如何使用HoloClean来恢复和清理数据集。最后,我们讨论了人工智能技术债务的原因。当软件设计和实施决策与业务目标和时间表“或完全冲突”时,技术债务就会累积起来。这项调查通过总结各种以数据为中心的方法,为未来以数据为核心的人工智能讨论奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信