Group contribution method promoted correlations of glass transition temperature of deep eutectic solvents

Sakshi S. Tak, Debashis Kundu
{"title":"Group contribution method promoted correlations of glass transition temperature of deep eutectic solvents","authors":"Sakshi S. Tak,&nbsp;Debashis Kundu","doi":"10.1016/j.ctta.2023.100108","DOIUrl":null,"url":null,"abstract":"<div><p>Glass transition temperature (<em>T<sub>g</sub></em>) being a crucial thermal property, linear models for predicting <em>T<sub>g</sub></em> of deep eutectic solvents (DES) are proposed. The group contribution method and genetic algorithm using an experimental dataset of 51 DESs are applied to obtain the group contribution values for each functional group present in DESs by considering their stereochemistry. By segregating the DESs into subclasses according to their molecular structures, linear regressions for each class are performed to develop the model. The framework is used to compute the <em>T<sub>g</sub></em> of all DESs taken in this study, and it shows an absolute average deviation of 2.7%.</p></div>","PeriodicalId":9781,"journal":{"name":"Chemical Thermodynamics and Thermal Analysis","volume":"9 ","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Thermodynamics and Thermal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667312623000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glass transition temperature (Tg) being a crucial thermal property, linear models for predicting Tg of deep eutectic solvents (DES) are proposed. The group contribution method and genetic algorithm using an experimental dataset of 51 DESs are applied to obtain the group contribution values for each functional group present in DESs by considering their stereochemistry. By segregating the DESs into subclasses according to their molecular structures, linear regressions for each class are performed to develop the model. The framework is used to compute the Tg of all DESs taken in this study, and it shows an absolute average deviation of 2.7%.

基团贡献法提高了深共晶溶剂玻璃化转变温度的相关性
玻璃化转变温度(Tg)是一个重要的热性质,提出了预测深共晶溶剂(DES)玻璃化转变的线性模型。使用51个DESs的实验数据集,应用基团贡献法和遗传算法,通过考虑DESs中存在的每个官能团的立体化学,获得它们的基团贡献值。通过根据DES的分子结构将其分为子类,对每个类进行线性回归以开发模型。该框架用于计算本研究中所有DESs的Tg,其绝对平均偏差为2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信