An improved artificial neural network fit of the ab initio potential energy surface points for HeH+ + H2 and its ensuing rigid rotors quantum dynamics

R. Biswas , F.A. Gianturco , K. Giri , L. González-Sánchez , U. Lourderaj , N. Sathyamurthy , E. Yurtsever
{"title":"An improved artificial neural network fit of the ab initio potential energy surface points for HeH+ + H2 and its ensuing rigid rotors quantum dynamics","authors":"R. Biswas ,&nbsp;F.A. Gianturco ,&nbsp;K. Giri ,&nbsp;L. González-Sánchez ,&nbsp;U. Lourderaj ,&nbsp;N. Sathyamurthy ,&nbsp;E. Yurtsever","doi":"10.1016/j.aichem.2023.100017","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial neural networks (ANN) have been shown for the last several years to be a versatile tool for fitting <em>ab initio</em> potential energy surfaces. We have demonstrated recently how a 60-neuron ANN could successfully fit a four-dimensional <em>ab initio</em> potential energy surface for the rigid rotor HeH<sup>+</sup> - rigid rotor H<sub>2</sub> system with a root-mean-squared deviation (RMSD) of 35 cm<sup>−1</sup>. We show in the present study how a (40, 40) neural network with two hidden layers could achieve a better fit with an RMSD of 5 cm<sup>−1</sup>. Through a follow-up quantum dynamical study of HeH<sup>+</sup>(<span><math><msub><mrow><mi>j</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>)-H<sub>2</sub>(<span><math><msub><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) collisions, it is shown that the two fits lead to slightly different rotational excitation and de-excitation cross sections but are comparable to each other in terms of magnitude and dependence on the relative translational energy of the collision partners. When averaged over relative translational energy, the two sets of results lead to rate coefficients that are nearly indistinguishable at higher temperatures thus demonstrating the reliability of the ANN method for fitting <em>ab initio</em> potential energy surfaces. On the other hand, we also find that the de-excitation rate coefficients obtained using the two different ANN fits differ significantly from each other at low temperatures. The consequences of these findings are discussed in our conclusions.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks (ANN) have been shown for the last several years to be a versatile tool for fitting ab initio potential energy surfaces. We have demonstrated recently how a 60-neuron ANN could successfully fit a four-dimensional ab initio potential energy surface for the rigid rotor HeH+ - rigid rotor H2 system with a root-mean-squared deviation (RMSD) of 35 cm−1. We show in the present study how a (40, 40) neural network with two hidden layers could achieve a better fit with an RMSD of 5 cm−1. Through a follow-up quantum dynamical study of HeH+(j1)-H2(j2) collisions, it is shown that the two fits lead to slightly different rotational excitation and de-excitation cross sections but are comparable to each other in terms of magnitude and dependence on the relative translational energy of the collision partners. When averaged over relative translational energy, the two sets of results lead to rate coefficients that are nearly indistinguishable at higher temperatures thus demonstrating the reliability of the ANN method for fitting ab initio potential energy surfaces. On the other hand, we also find that the de-excitation rate coefficients obtained using the two different ANN fits differ significantly from each other at low temperatures. The consequences of these findings are discussed in our conclusions.

一种改进的人工神经网络拟合heh++ H2及其刚性转子量子动力学的从头算势能面点
在过去的几年里,人工神经网络(ANN)已被证明是一种用于拟合从头算势能面的通用工具。最近,我们已经证明了60个神经元的ANN如何成功地拟合刚性转子HeH+-刚性转子H2系统的四维从头算势能面,其均方根偏差(RMSD)为35 cm-1。在本研究中,我们展示了具有两个隐藏层的(40,40)神经网络如何在5 cm−1的RMSD下实现更好的拟合。通过对HeH+(j1)-H2(j2)碰撞的后续量子动力学研究,结果表明,这两种拟合导致了略微不同的旋转激发和去激发截面,但在大小和对碰撞伙伴相对平移能的依赖性方面是可比较的。当在相对平移能上进行平均时,这两组结果导致在较高温度下几乎无法区分的速率系数,从而证明了ANN方法用于拟合从头算势能面的可靠性。另一方面,我们还发现,在低温下,使用两种不同的ANN拟合获得的灭磁率系数彼此显著不同。我们的结论中讨论了这些发现的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信