Evolutionary games and spatial periodicity

Te Wu , Feng Fu , Long Wang
{"title":"Evolutionary games and spatial periodicity","authors":"Te Wu ,&nbsp;Feng Fu ,&nbsp;Long Wang","doi":"10.1016/j.jai.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations. It still remains an open problem to fully understand evolutionary game dynamics on networks except for certain limiting scenarios such as weak selection. Here we study the evolutionary dynamics of spatial games under strong selection where strategy evolution of individuals becomes deterministic in a fashion of winners taking all. We show that the long term behavior of the evolutionary process eventually converges to a particular basin of attraction, which is either a periodic cycle or a single fixed state depending on specific initial conditions and model parameters. In particular, we find that symmetric starting configurations can induce an exceedingly long transient phase encompassing a large number of aesthetic spatial patterns including the prominent kaleidoscopic cooperation. Our finding holds for any population structure and a broad class of finite games beyond the Prisoner’s Dilemma. Our work offers insights into understanding evolutionary dynamics of spatially extended systems ubiquitous in biology and ecology.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"2 2","pages":"Pages 79-86"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294985542300014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations. It still remains an open problem to fully understand evolutionary game dynamics on networks except for certain limiting scenarios such as weak selection. Here we study the evolutionary dynamics of spatial games under strong selection where strategy evolution of individuals becomes deterministic in a fashion of winners taking all. We show that the long term behavior of the evolutionary process eventually converges to a particular basin of attraction, which is either a periodic cycle or a single fixed state depending on specific initial conditions and model parameters. In particular, we find that symmetric starting configurations can induce an exceedingly long transient phase encompassing a large number of aesthetic spatial patterns including the prominent kaleidoscopic cooperation. Our finding holds for any population structure and a broad class of finite games beyond the Prisoner’s Dilemma. Our work offers insights into understanding evolutionary dynamics of spatially extended systems ubiquitous in biology and ecology.

进化博弈与空间周期性
空间相互作用被认为是影响结构种群中发生的各种进化过程的重要因素。除了弱选择等某些限制性场景外,完全理解网络上的进化博弈动力学仍然是一个悬而未决的问题。在这里,我们研究了强选择下空间博弈的进化动力学,其中个体的策略进化以赢家通吃的方式变得具有确定性。我们表明,进化过程的长期行为最终会收敛到一个特定的吸引盆地,该吸引盆地要么是一个周期性循环,要么是一种单一的固定状态,这取决于特定的初始条件和模型参数。特别是,我们发现对称的启动配置可以诱导一个非常长的过渡阶段,包括大量的美学空间模式,包括突出的万花筒般的合作。我们的发现适用于任何人口结构和囚犯困境之外的一大类有限博弈。我们的工作为理解生物学和生态学中普遍存在的空间扩展系统的进化动力学提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信