Reachable set estimation for discrete-time Markovian jump neural networks with unified uncertain transition probability

Yufeng Tian , Wengang Ao , Peng Shi
{"title":"Reachable set estimation for discrete-time Markovian jump neural networks with unified uncertain transition probability","authors":"Yufeng Tian ,&nbsp;Wengang Ao ,&nbsp;Peng Shi","doi":"10.1016/j.jai.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay. By allowing uncertainty in the transition probabilities, a framework unifies and enhances the generality and realism of these systems. To fully exploit the unified uncertain transition probabilities, an equivalent transformation technique is introduced as an alternative to traditional estimation methods, effectively utilizing the information of transition probabilities. Furthermore, a vector Wirtinger-based summation inequality is proposed, which captures more system information compared to existing ones. Building upon these components, a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities. A numerical example is illustrated to demonstrate the superiority of the approaches.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"2 3","pages":"Pages 167-174"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855423000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay. By allowing uncertainty in the transition probabilities, a framework unifies and enhances the generality and realism of these systems. To fully exploit the unified uncertain transition probabilities, an equivalent transformation technique is introduced as an alternative to traditional estimation methods, effectively utilizing the information of transition probabilities. Furthermore, a vector Wirtinger-based summation inequality is proposed, which captures more system information compared to existing ones. Building upon these components, a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities. A numerical example is illustrated to demonstrate the superiority of the approaches.

具有统一不确定转移概率的离散马尔可夫跳跃神经网络的可达集估计
本文主要研究具有时滞的马尔可夫跳跃神经网络的可达集估计问题。通过允许过渡概率的不确定性,一个框架统一并增强了这些系统的通用性和现实性。为了充分利用统一的不确定转移概率,引入了等效变换技术作为传统估计方法的替代,有效地利用了转移概率的信息。此外,提出了一种基于向量Wirtinger的求和不等式,与现有的求和算法相比,该不等式能够捕获更多的系统信息。在此基础上,针对具有统一不确定转移概率的马尔可夫跳跃神经网络,提出了一个保证可达集估计的新条件。通过算例说明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信