{"title":"COVINet: A hybrid model for classification of COVID and Non-COVID pneumonia in CT and X-Ray imagery","authors":"Vasu Mittal, Akhil Kumar","doi":"10.1016/j.ijcce.2023.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>The COVID-19 pandemic has resulted in a significant increase in the number of pneumonia cases, including those caused by the Coronavirus. To detect COVID pneumonia, RT-PCR is used as the primary detection tool for COVID-19 pneumonia but chest imaging, including CT scans and X-Ray imagery, can also be used as a secondary important tool for the diagnosis of pneumonia, including COVID pneumonia. However, the interpretation of chest imaging in COVID-19 pneumonia can be challenging, as the signs of the disease on imaging may be subtle and may overlap with normal pneumonia. In this paper, we propose a hybrid model with the name COVINet which uses ResNet-101 as the feature extractor and classical K-Nearest Neighbors as the classifier that led us to give automated results for detecting COVID pneumonia in X-Rays and CT imagery. The proposed hybrid model achieved a classification accuracy of 98.6%. The model's precision, recall, and F1-Score values were also impressive, ranging from 98-99%. To back and support the proposed model, several CNN-based feature extractors and classical machine learning classifiers have been exploited. The outcome with exploited combinations suggests that our model can significantly enhance the accuracy and precision of detecting COVID-19 pneumonia on chest imaging, and this holds the potential of being a valuable resource for early identification and diagnosis of the illness by radiologists and medical practitioners.</p></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"4 ","pages":"Pages 149-159"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307423000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The COVID-19 pandemic has resulted in a significant increase in the number of pneumonia cases, including those caused by the Coronavirus. To detect COVID pneumonia, RT-PCR is used as the primary detection tool for COVID-19 pneumonia but chest imaging, including CT scans and X-Ray imagery, can also be used as a secondary important tool for the diagnosis of pneumonia, including COVID pneumonia. However, the interpretation of chest imaging in COVID-19 pneumonia can be challenging, as the signs of the disease on imaging may be subtle and may overlap with normal pneumonia. In this paper, we propose a hybrid model with the name COVINet which uses ResNet-101 as the feature extractor and classical K-Nearest Neighbors as the classifier that led us to give automated results for detecting COVID pneumonia in X-Rays and CT imagery. The proposed hybrid model achieved a classification accuracy of 98.6%. The model's precision, recall, and F1-Score values were also impressive, ranging from 98-99%. To back and support the proposed model, several CNN-based feature extractors and classical machine learning classifiers have been exploited. The outcome with exploited combinations suggests that our model can significantly enhance the accuracy and precision of detecting COVID-19 pneumonia on chest imaging, and this holds the potential of being a valuable resource for early identification and diagnosis of the illness by radiologists and medical practitioners.