Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification

Sylvia Hochstuhl , Niklas Pfeffer , Antje Thiele , Stefan Hinz , Joel Amao-Oliva , Rolf Scheiber , Andreas Reigber , Holger Dirks
{"title":"Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification","authors":"Sylvia Hochstuhl ,&nbsp;Niklas Pfeffer ,&nbsp;Antje Thiele ,&nbsp;Stefan Hinz ,&nbsp;Joel Amao-Oliva ,&nbsp;Rolf Scheiber ,&nbsp;Andreas Reigber ,&nbsp;Holger Dirks","doi":"10.1016/j.ophoto.2023.100047","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: <span>https://doi.org/10.35097/1700</span><svg><path></path></svg>.</p></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"10 ","pages":"Article 100047"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393223000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/1700.

Pol-InSAR- island -多频Pol-InSAR数据土地覆盖分类的基准数据集
本文介绍了Pol-InSAR Island,这是第一个公开可用的多频偏振干涉合成孔径雷达(Pol-InSAR)数据集,标有详细的土地覆盖类别,是一个具有挑战性的土地覆盖分类基准数据集。近年来,机器学习已成为遥感图像分析的有力工具。虽然有许多大规模的基准数据集用于训练和评估用于分析光学数据的机器学习模型,但标记SAR或更具体地说,Pol-InSAR数据的可用性非常有限。缺乏用于训练以及测试和比较不同方法的标记数据,阻碍了用于Pol-InSAR图像分析的机器学习算法的快速发展。本文提出的Pol-InSAR岛基准数据集旨在填补这一空白。该数据集由德国航空航天中心的机载F-SAR系统在东弗里斯岛Baltrum上空获得的S波段和L波段的Pol-InSAR数据组成。干涉图像对是具有几分钟时间偏移的重复通过测量的结果。图像数据在1 m×1m网格。像素精确的类别标签由12个不同的土地覆盖类别组成,基于现有的生物群落类型地图和SAR和光学图像的视觉解释,在半自动过程中生成。定义了固定的训练和测试子集,以确保在Pol-InSAR Island数据集上前瞻性训练和测试的不同方法的可比性。除了数据集之外,还提供了监督Wishart和Random Forest分类器的结果,这些分类器的平均联合交集得分在24%和67%之间,作为未来工作的基线。数据集通过KITopenData提供:https://doi.org/10.35097/1700.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信