Xian-Ming Zhang , Qing-Long Han , Xiaohua Ge , Boda Ning , Bao-Lin Zhang
{"title":"Sampled-data control systems with non-uniform sampling: A survey of methods and trends","authors":"Xian-Ming Zhang , Qing-Long Han , Xiaohua Ge , Boda Ning , Bao-Lin Zhang","doi":"10.1016/j.arcontrol.2023.03.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>The convergence of sensing, computing, communication and control elements drives the traditional point-to-point control systems towards networked control systems<span>. Sampled-data control systems, which focus on the significant interplay between sampling and control, play a critical role in modern networked control systems, including </span></span>intelligent transportation systems<span>, smart grids, and advanced manufacturing systems<span>. This paper presents a survey of methods and trends in non-uniform sampled-data control systems, where sampling and control actions are performed in an aperiodic manner. First, some fundamental issues of both continuous- and discrete-time sampled-data control systems are discussed. Next, main methods in both continuous-time and discrete-time domains are elaborated, respectively. Then, event-triggered sampling, under which sampling is executed only when the system needs attention, is examined. Typical triggering mechanisms in the existing literature are reviewed and classified into four types according to different threshold functions. Furthermore, two applications in terms of automated vehicle platoons and islanded microgrids are provided to demonstrate that sampled-data control methods are capable to support relevant practical application scenarios. Finally, several challenging issues are envisioned to direct future research.</span></span></p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 70-91"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578823000081","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 13
Abstract
The convergence of sensing, computing, communication and control elements drives the traditional point-to-point control systems towards networked control systems. Sampled-data control systems, which focus on the significant interplay between sampling and control, play a critical role in modern networked control systems, including intelligent transportation systems, smart grids, and advanced manufacturing systems. This paper presents a survey of methods and trends in non-uniform sampled-data control systems, where sampling and control actions are performed in an aperiodic manner. First, some fundamental issues of both continuous- and discrete-time sampled-data control systems are discussed. Next, main methods in both continuous-time and discrete-time domains are elaborated, respectively. Then, event-triggered sampling, under which sampling is executed only when the system needs attention, is examined. Typical triggering mechanisms in the existing literature are reviewed and classified into four types according to different threshold functions. Furthermore, two applications in terms of automated vehicle platoons and islanded microgrids are provided to demonstrate that sampled-data control methods are capable to support relevant practical application scenarios. Finally, several challenging issues are envisioned to direct future research.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.