{"title":"Fresh function spectra","authors":"Vera Fischer, Marlene Koelbing, Wolfgang Wohofsky","doi":"10.1016/j.apal.2023.103300","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the fresh function spectrum of forcing notions, where a new function on an ordinal is called fresh if all its initial segments are in the ground model. We determine the fresh function spectrum of several forcing notions and discuss the difference between fresh functions and fresh subsets. Furthermore, we consider the question which sets are realizable as the fresh function spectrum of a homogeneous forcing. We show that under GCH all sets with a certain closure property are realizable, while consistently there are sets which are not realizable.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"174 9","pages":"Article 103300"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722300057X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the fresh function spectrum of forcing notions, where a new function on an ordinal is called fresh if all its initial segments are in the ground model. We determine the fresh function spectrum of several forcing notions and discuss the difference between fresh functions and fresh subsets. Furthermore, we consider the question which sets are realizable as the fresh function spectrum of a homogeneous forcing. We show that under GCH all sets with a certain closure property are realizable, while consistently there are sets which are not realizable.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.