{"title":"AN UNBOUNDED GENERALIZATION OF TOMITA's OBSERVABLE ALGEBRAS II","authors":"Hiroshi Inoue","doi":"10.1016/S0034-4877(23)00028-9","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous paper <span>[4]</span> we tried to build the basic theory of unbounded Tomita's observable algebras called <em>T</em><sup>†</sup><span>-algebras which are related to unbounded operator algebras<span><span>, especially unbounded Tomita-Takesaki theory, operator algebras on Krein spaces, studies of positive linear functionals on *-algebras and so on. And we defined the notions of regularity, </span>semisimplicity and singularity of </span></span><em>T</em><sup>†</sup>-algebras and characterized them. In this paper we shall proceed further with our studies of <em>T</em><sup>†</sup>-algebras and investigate whether a <em>T</em><sup>†</sup><span>-algebra is decomposable into a regular part and a singular part.</span></p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"91 2","pages":"Pages 251-276"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000289","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2
Abstract
In a previous paper [4] we tried to build the basic theory of unbounded Tomita's observable algebras called T†-algebras which are related to unbounded operator algebras, especially unbounded Tomita-Takesaki theory, operator algebras on Krein spaces, studies of positive linear functionals on *-algebras and so on. And we defined the notions of regularity, semisimplicity and singularity of T†-algebras and characterized them. In this paper we shall proceed further with our studies of T†-algebras and investigate whether a T†-algebra is decomposable into a regular part and a singular part.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.