Gábor Bacsó , Boštjan Brešar , Kirsti Kuenzel , Douglas F. Rall
{"title":"Graphs with equal Grundy domination and independence number","authors":"Gábor Bacsó , Boštjan Brešar , Kirsti Kuenzel , Douglas F. Rall","doi":"10.1016/j.disopt.2023.100777","DOIUrl":null,"url":null,"abstract":"<div><p>The Grundy domination number, <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, of a graph <span><math><mi>G</mi></math></span> is the maximum length of a sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> of vertices in <span><math><mi>G</mi></math></span> such that for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, the closed neighborhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> contains a vertex that does not belong to any closed neighborhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>j</mi><mo><</mo><mi>i</mi></mrow></math></span>. It is well known that the Grundy domination number of any graph <span><math><mi>G</mi></math></span> is greater than or equal to the upper domination number <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is in turn greater than or equal to the independence number <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we initiate the study of the class of graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and its subclass consisting of graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We characterize the latter class of graphs among all twin-free connected graphs, provide a number of properties of these graphs, and prove that the hypercubes are members of this class. In addition, we give several necessary conditions for graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and present large families of such graphs.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100777"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000191","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The Grundy domination number, , of a graph is the maximum length of a sequence of vertices in such that for every , the closed neighborhood contains a vertex that does not belong to any closed neighborhood , where . It is well known that the Grundy domination number of any graph is greater than or equal to the upper domination number , which is in turn greater than or equal to the independence number . In this paper, we initiate the study of the class of graphs with and its subclass consisting of graphs with . We characterize the latter class of graphs among all twin-free connected graphs, provide a number of properties of these graphs, and prove that the hypercubes are members of this class. In addition, we give several necessary conditions for graphs with and present large families of such graphs.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.