Assessment of an annotation method for the detection of Spanish argumentative, non-argumentative, and their components

Yudi Guzmán-Monteza
{"title":"Assessment of an annotation method for the detection of Spanish argumentative, non-argumentative, and their components","authors":"Yudi Guzmán-Monteza","doi":"10.1016/j.teler.2023.100068","DOIUrl":null,"url":null,"abstract":"<div><p>There are many annotation methods for the English language based on adapting an argumentation model according to the study domain. However, as far as research has been done, there are no annotation methods for detecting argumentative content in Spanish, not only due to the complexity of identifying the evidence but also because of the lack of data available for this task. The research aims to present and evaluate an annotation method consisting of an adapted argumentation model, an annotation guide, and an annotation process based on Twitter data analysis. The Inter Annotator Agreement (IAA) study achieves 0.63 Fleiss Kappa for Argument/Non-Argument tagging, 0.35 Fleiss Kappa for Argument Component tagging, and 0.53 Fleiss Kappa for Non-Argument Component tagging, while the best Cohen's kappa (k) index achieved, was 0.73, 0.52 and 0.75 respectively. The results' assessment highlights the need to include linguistic segmentation rules for the second annotation task. It is crucial to use discourse markers for the claim and evidence detection. For the first annotation task, it determined that if the prevalence index and the bias index are very low, the prevalence index predominates over the bias index because k increases (0.52&lt;=<em>k</em>&lt;=0.72); likewise, for the third annotation task, when the observed agreement index is almost perfect (0.92) the value of k increases (<em>k</em>=0.75) despite a high prevalence index and a low bias index. The annotated corpus with a Fleiss Kappa &gt;= 0.60, agreement and disagreement tables, and confusion matrices code are available on Mendeley Data Repository.</p></div>","PeriodicalId":101213,"journal":{"name":"Telematics and Informatics Reports","volume":"11 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematics and Informatics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772503023000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many annotation methods for the English language based on adapting an argumentation model according to the study domain. However, as far as research has been done, there are no annotation methods for detecting argumentative content in Spanish, not only due to the complexity of identifying the evidence but also because of the lack of data available for this task. The research aims to present and evaluate an annotation method consisting of an adapted argumentation model, an annotation guide, and an annotation process based on Twitter data analysis. The Inter Annotator Agreement (IAA) study achieves 0.63 Fleiss Kappa for Argument/Non-Argument tagging, 0.35 Fleiss Kappa for Argument Component tagging, and 0.53 Fleiss Kappa for Non-Argument Component tagging, while the best Cohen's kappa (k) index achieved, was 0.73, 0.52 and 0.75 respectively. The results' assessment highlights the need to include linguistic segmentation rules for the second annotation task. It is crucial to use discourse markers for the claim and evidence detection. For the first annotation task, it determined that if the prevalence index and the bias index are very low, the prevalence index predominates over the bias index because k increases (0.52<=k<=0.72); likewise, for the third annotation task, when the observed agreement index is almost perfect (0.92) the value of k increases (k=0.75) despite a high prevalence index and a low bias index. The annotated corpus with a Fleiss Kappa >= 0.60, agreement and disagreement tables, and confusion matrices code are available on Mendeley Data Repository.

评估一种标注方法,用于检测西班牙语的辩论,非辩论,和他们的组成部分
英语有许多注释方法是基于根据研究领域调整论证模型。然而,就研究而言,还没有检测西班牙语议论文内容的注释方法,这不仅是因为识别证据的复杂性,还因为缺乏可用于这项任务的数据。本研究旨在提出并评估一种注释方法,该方法包括一个自适应的论证模型、一个注释指南和一个基于Twitter数据分析的注释过程。注释者间协议(IAA)研究在参数/非参数标记方面达到0.63 Fleiss-Kappa,在参数分量标记方面达到0.35 Fleiss-Kappa,在非参数分量标记领域达到0.53 Fleiss Kappa,而获得的最佳Cohen’s Kappa(k)指数分别为0.73、0.52和0.75。结果的评估强调了在第二个注释任务中包含语言分割规则的必要性。使用话语标记对索赔和证据检测至关重要。对于第一个注释任务,它确定如果流行率指数和偏倚指数非常低,则流行率指数占偏倚指数的主导地位,因为k增加(0.52<;=k<;=0.72);同样,对于第三个注释任务,当观察到的一致性指数几乎是完美的(0.92)时,尽管存在高患病率指数和低偏倚指数,但k的值增加(k=0.75)。带有Fleiss-Kappa的注释语料库>;=0.60、一致性和不一致性表以及混淆矩阵代码可在Mendeley数据库中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信