Improving hydro-mechanical behavior of loess by a bio-strategy

Chaosheng Tang , Xiaohua Pan , Yaojia Cheng , Xinlun Ji
{"title":"Improving hydro-mechanical behavior of loess by a bio-strategy","authors":"Chaosheng Tang ,&nbsp;Xiaohua Pan ,&nbsp;Yaojia Cheng ,&nbsp;Xinlun Ji","doi":"10.1016/j.bgtech.2023.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Loess is widely distributed all over the world, covering about 10% of the land surface on earth. China is one of the countries with the most serious loess soil erosion in the world, especially the loess plateau. This is mainly related to the poor water stability and mechanical properties of the loess. A new coupling method of bio-cementation (Microbially Induced Calcite Precipitation: MICP) and sand additive to improve the hydro-mechanical behavior of loess was proposed. The feasibility, coupling improvement mechanism and the effects of sand content, bio-cement treatment cycle and cementation solution (CS) concentration were investigated through a series of tests. The results indicated that the proposed method was effective to improve the water stability and structure strength of loess. The coupling improvement performance were positively related to the sand content. When the sand content was 40%, compared to bio-cement treatment, the coupling treatment was 9 times deeper in treatment depth, 3.5 times stronger in peak structure strength, and the sum slaking rate was less than half. The coupling improvement mechanism can be attributed to the form of the double layers including hard crust and cemented layer. With the addition of sand, the thickness, structure strength and water stability of the double layers increased. The main reason is that there were more interfacial voids between sand particles and loess particles, increasing the permeability of loess and treatment depth, forming more amount of calcium carbonates. Based on the experimental condition in this study, 1.0 M of CS concentration was the optimal spaying strategy to improve the hydro-mechanical properties of loess.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"1 2","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929123000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Loess is widely distributed all over the world, covering about 10% of the land surface on earth. China is one of the countries with the most serious loess soil erosion in the world, especially the loess plateau. This is mainly related to the poor water stability and mechanical properties of the loess. A new coupling method of bio-cementation (Microbially Induced Calcite Precipitation: MICP) and sand additive to improve the hydro-mechanical behavior of loess was proposed. The feasibility, coupling improvement mechanism and the effects of sand content, bio-cement treatment cycle and cementation solution (CS) concentration were investigated through a series of tests. The results indicated that the proposed method was effective to improve the water stability and structure strength of loess. The coupling improvement performance were positively related to the sand content. When the sand content was 40%, compared to bio-cement treatment, the coupling treatment was 9 times deeper in treatment depth, 3.5 times stronger in peak structure strength, and the sum slaking rate was less than half. The coupling improvement mechanism can be attributed to the form of the double layers including hard crust and cemented layer. With the addition of sand, the thickness, structure strength and water stability of the double layers increased. The main reason is that there were more interfacial voids between sand particles and loess particles, increasing the permeability of loess and treatment depth, forming more amount of calcium carbonates. Based on the experimental condition in this study, 1.0 M of CS concentration was the optimal spaying strategy to improve the hydro-mechanical properties of loess.

利用生物策略改善黄土的水力学行为
黄土广泛分布于世界各地,约占地球表面的10%。中国是世界上黄土水土流失最严重的国家之一,尤其是黄土高原。这主要与黄土的水稳定性和力学性能较差有关。提出了一种新的生物胶结(微生物诱导煅烧沉淀:MICP)与加砂剂相结合的方法,以改善黄土的水力力学性能。通过一系列试验,研究了掺砂量、生物水泥处理周期和胶结液浓度对复合改性的可行性、耦合改性机理及效果。结果表明,该方法对提高黄土的水稳定性和结构强度是有效的。耦合改善性能与含砂量呈正相关。当含砂量为40%时,与生物水泥处理相比,耦合处理的处理深度深9倍,峰值结构强度强3.5倍,总崩解率不到一半。耦合改善机制可归因于包括硬壳和胶结层的双层形式。随着砂的加入,双层的厚度、结构强度和水稳定性都有所提高。主要原因是砂粒与黄土颗粒之间存在较多的界面空隙,增加了黄土的渗透性和处理深度,形成了较多的碳酸钙。根据本研究的实验条件,1.0 M的CS浓度是改善黄土水力学性能的最佳喷洒策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信