Bjoern Andres , Silvia Di Gregorio , Jannik Irmai , Jan-Hendrik Lange
{"title":"A polyhedral study of lifted multicuts","authors":"Bjoern Andres , Silvia Di Gregorio , Jannik Irmai , Jan-Hendrik Lange","doi":"10.1016/j.disopt.2022.100757","DOIUrl":null,"url":null,"abstract":"<div><p>Fundamental to many applications in data analysis are the decompositions of a graph, i.e. partitions of the node set into component-inducing subsets. One way of encoding decompositions is by multicuts, the subsets of those edges that straddle distinct components. Recently, a lifting of multicuts from a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> to an augmented graph <span><math><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>̂</mo></mrow></mover><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>∪</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> has been proposed in the field of image analysis, with the goal of obtaining a more expressive characterization of graph decompositions in which it is made explicit also for pairs <span><math><mrow><mi>F</mi><mo>⊆</mo><mfenced><mfrac><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced><mo>∖</mo><mi>E</mi></mrow></math></span> of non-neighboring nodes whether these are in the same or distinct components. In this work, we study in detail the polytope in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>E</mi><mo>∪</mo><mi>F</mi></mrow></msup></math></span> whose vertices are precisely the characteristic vectors of multicuts of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̂</mo></mrow></mover></math></span> lifted from <span><math><mi>G</mi></math></span>, connecting it, in particular, to the rich body of prior work on the clique partitioning and multilinear polytope.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"47 ","pages":"Article 100757"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000627","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
Fundamental to many applications in data analysis are the decompositions of a graph, i.e. partitions of the node set into component-inducing subsets. One way of encoding decompositions is by multicuts, the subsets of those edges that straddle distinct components. Recently, a lifting of multicuts from a graph to an augmented graph has been proposed in the field of image analysis, with the goal of obtaining a more expressive characterization of graph decompositions in which it is made explicit also for pairs of non-neighboring nodes whether these are in the same or distinct components. In this work, we study in detail the polytope in whose vertices are precisely the characteristic vectors of multicuts of lifted from , connecting it, in particular, to the rich body of prior work on the clique partitioning and multilinear polytope.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.