Segmentation of structural defects in polymer composite computed tomography images with deep learning models

Ruslan Vorobev , Ivan Vasilev , Ivan Kremnev
{"title":"Segmentation of structural defects in polymer composite computed tomography images with deep learning models","authors":"Ruslan Vorobev ,&nbsp;Ivan Vasilev ,&nbsp;Ivan Kremnev","doi":"10.1016/j.tmater.2023.100014","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate appliance of different deep learning models to the problem of semantic segmentation of structural defects in computed tomography images of fiber-reinforced polymer composite material. Specifically, we try to segment porosities and delaminations in a specimen using U-Net and DeepLabv3 neural networks. We find out that complex models struggle to generalize solutions on small data samples that are generally available to individual research teams, whereas smaller models are the right choice for approaching defect segmentation in CT images. Our experiments are based on our own laboratory data, collected with X-ray microtomography and labeled manually for the semantic segmentation task.</p></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"3 ","pages":"Article 100014"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X23000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate appliance of different deep learning models to the problem of semantic segmentation of structural defects in computed tomography images of fiber-reinforced polymer composite material. Specifically, we try to segment porosities and delaminations in a specimen using U-Net and DeepLabv3 neural networks. We find out that complex models struggle to generalize solutions on small data samples that are generally available to individual research teams, whereas smaller models are the right choice for approaching defect segmentation in CT images. Our experiments are based on our own laboratory data, collected with X-ray microtomography and labeled manually for the semantic segmentation task.

用深度学习模型分割聚合物复合材料计算机断层扫描图像中的结构缺陷
我们研究了不同深度学习模型在纤维增强聚合物复合材料计算机断层扫描图像中结构缺陷语义分割问题中的应用。具体来说,我们试图使用U-Net和DeepLabv3神经网络来分割样本中的孔隙率和分层。我们发现,复杂的模型很难在单个研究团队通常可以获得的小数据样本上推广解决方案,而较小的模型是处理CT图像缺陷分割的正确选择。我们的实验基于我们自己的实验室数据,通过X射线显微摄影收集,并手动标记用于语义分割任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信