{"title":"GPU acceleration of Levenshtein distance computation between long strings","authors":"David Castells-Rufas","doi":"10.1016/j.parco.2023.103019","DOIUrl":null,"url":null,"abstract":"<div><p>Computing edit distance for very long strings has been hampered by quadratic time complexity with respect to string length. The WFA algorithm reduces the time complexity to a quadratic factor with respect to the edit distance between the strings. This work presents a GPU implementation of the WFA algorithm and a new optimization that can halve the elements to be computed, providing additional performance gains. The implementation allows to address the computation of the edit distance between strings having hundreds of millions of characters. The performance of the algorithm depends on the similarity between the strings. For strings longer than million characters, the performance is the best ever reported, which is above TCUPS for strings with similarities greater than 70% and above one hundred TCUPS for 99.9% similarity.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"116 ","pages":"Article 103019"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016781912300025X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Computing edit distance for very long strings has been hampered by quadratic time complexity with respect to string length. The WFA algorithm reduces the time complexity to a quadratic factor with respect to the edit distance between the strings. This work presents a GPU implementation of the WFA algorithm and a new optimization that can halve the elements to be computed, providing additional performance gains. The implementation allows to address the computation of the edit distance between strings having hundreds of millions of characters. The performance of the algorithm depends on the similarity between the strings. For strings longer than million characters, the performance is the best ever reported, which is above TCUPS for strings with similarities greater than 70% and above one hundred TCUPS for 99.9% similarity.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications