Different cofinalities of tree ideals

IF 0.6 2区 数学 Q2 LOGIC
Saharon Shelah , Otmar Spinas
{"title":"Different cofinalities of tree ideals","authors":"Saharon Shelah ,&nbsp;Otmar Spinas","doi":"10.1016/j.apal.2023.103290","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a general framework of generalized tree forcings, GTF for short, that includes the classical tree forcings like Sacks, Silver, Laver or Miller forcing. Using this concept we study the cofinality of the ideal <span><math><mi>I</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> associated with a GTF <strong><em>Q</em></strong>. We show that if for two GTF's <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> the consistency of <span><math><mrow><mi>add</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo><mo>&lt;</mo><mspace></mspace><mrow><mi>add</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span> holds, then we can obtain the consistency of <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo><mo>&lt;</mo><mspace></mspace><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>. We also show that <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo></math></span> can consistently be any cardinal of cofinality larger than the continuum.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"174 8","pages":"Article 103290"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223000477","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a general framework of generalized tree forcings, GTF for short, that includes the classical tree forcings like Sacks, Silver, Laver or Miller forcing. Using this concept we study the cofinality of the ideal I(Q) associated with a GTF Q. We show that if for two GTF's Q0 and Q1 the consistency of add(I(Q0))<add(I(Q1)) holds, then we can obtain the consistency of cof(I(Q1))<cof(I(Q0)). We also show that cof(I(Q)) can consistently be any cardinal of cofinality larger than the continuum.

树木理想的不同共通性
我们介绍了广义树强迫的一般框架,简称GTF,包括经典的树强迫,如Sacks、Silver、Laver或Miller强迫。使用这个概念,我们研究了与GTF Q相关的理想I(Q)的共尾性。我们表明,如果对于两个GTF的Q0和Q1,add(I(Q0))<;add(I(Q1))成立,则我们可以得到cof(I(Q2))<;cof(I(Q0))。我们还证明了cof(I(Q))可以一致地是任何大于连续体的共行列式基数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信