Classification of ℵ0-categorical C-minimal pure C-sets

IF 0.6 2区 数学 Q2 LOGIC
Françoise Delon , Marie-Hélène Mourgues
{"title":"Classification of ℵ0-categorical C-minimal pure C-sets","authors":"Françoise Delon ,&nbsp;Marie-Hélène Mourgues","doi":"10.1016/j.apal.2023.103375","DOIUrl":null,"url":null,"abstract":"<div><p>We classify all <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal <em>C</em>-sets up to elementary equivalence. As usual the Ryll-Nardzewski Theorem makes the classification of indiscernible <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical <em>C</em>-minimal sets as a first step. We first define <em>solvable</em> good trees, via a finite induction. The trees involved in initial and induction steps have a set of nodes, either consisting of a singleton, or having dense branches without endpoints and the same number of branches at each node. The class of <em>colored</em> good trees is the elementary class of solvable good trees. We show that a pure <em>C</em>-set <em>M</em> is indiscernible, finite or <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal iff its canonical tree <span><math><mi>T</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is a colored good tree. The classification of general <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal <em>C</em>-sets is done via finite trees with labeled vertices and edges, where labels are natural numbers, or infinity and complete theories of indiscernible, <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical or finite, and <em>C</em>-minimal <em>C</em>-sets.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 2","pages":"Article 103375"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722300132X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We classify all 0-categorical and C-minimal C-sets up to elementary equivalence. As usual the Ryll-Nardzewski Theorem makes the classification of indiscernible 0-categorical C-minimal sets as a first step. We first define solvable good trees, via a finite induction. The trees involved in initial and induction steps have a set of nodes, either consisting of a singleton, or having dense branches without endpoints and the same number of branches at each node. The class of colored good trees is the elementary class of solvable good trees. We show that a pure C-set M is indiscernible, finite or 0-categorical and C-minimal iff its canonical tree T(M) is a colored good tree. The classification of general 0-categorical and C-minimal C-sets is done via finite trees with labeled vertices and edges, where labels are natural numbers, or infinity and complete theories of indiscernible, 0-categorical or finite, and C-minimal C-sets.

c -极小纯c集的分类
我们对所有ℵ0-范畴和C-极小C-集直至初等等价。像往常一样,Ryll-Nardzewski定理使得不可分辨的分类ℵ0-范畴C-极小集作为第一步。我们首先通过有限归纳定义了可解的好树。初始步骤和归纳步骤中涉及的树有一组节点,要么由单个节点组成,要么具有没有端点的密集分支,每个节点的分支数量相同。有色好树类是可解好树的初等类。我们证明了纯C集M是不可分辨的、有限的或ℵ0-范畴和C-极小当其正则树T(M)是有色好树。一般的分类ℵ0-范畴和C-极小C-集是通过具有标记顶点和边的有限树来实现的,其中标记是自然数,或无穷大和不可分辨的完全理论,ℵ0-范畴或有限的C-极小C-集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信