Christopher J. Eagle , Clovis Hamel , Sandra Müller , Franklin D. Tall
{"title":"An undecidable extension of Morley's theorem on the number of countable models","authors":"Christopher J. Eagle , Clovis Hamel , Sandra Müller , Franklin D. Tall","doi":"10.1016/j.apal.2023.103317","DOIUrl":null,"url":null,"abstract":"<div><p>We show that Morley's theorem on the number of countable models of a countable first-order theory becomes an undecidable statement when extended to second-order logic. More generally, we calculate the number of equivalence classes of equivalence relations obtained by countable intersections of projective sets in several models of set theory. Our methods include random and Cohen forcing, Woodin cardinals and Inner Model Theory.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722300074X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that Morley's theorem on the number of countable models of a countable first-order theory becomes an undecidable statement when extended to second-order logic. More generally, we calculate the number of equivalence classes of equivalence relations obtained by countable intersections of projective sets in several models of set theory. Our methods include random and Cohen forcing, Woodin cardinals and Inner Model Theory.