Siyu Zhang , Lei Su , Jiefei Gu , Ke Li , Weitian Wu , Michael Pecht
{"title":"Category-level selective dual-adversarial network using significance-augmented unsupervised domain adaptation for surface defect detection","authors":"Siyu Zhang , Lei Su , Jiefei Gu , Ke Li , Weitian Wu , Michael Pecht","doi":"10.1016/j.eswa.2023.121879","DOIUrl":null,"url":null,"abstract":"<div><p>Surface defect detection is very important to ensure the quality of industrial products. Traditional machine learning cannot be well extended to a non-identically distributed dataset, making surface defect detection a data-limited task. Unsupervised domain adaptation (UDA) can solve this problem by transferring knowledge from a labeled source domain to an unlabeled target domain. Adversarial learning is one of the latest heuristic methods to deal with domain shift in UDA tasks. Although impressive results have been achieved, the adversarial model still suffers from the equilibrium challenge, which may lead to under-transfer or negative transfer. To this end, we utilize joint distribution adaptation to propose a novel UDA model, named significance-augmented-based category-level selective dual-adversarial (CDASA) network, to learn a generalized model. Specifically, to promote positive transfer, we use the selective dual-adversarial (DA) learning strategy to further minimize the feature distribution difference at equilibrium to achieve better domain confusion. Meanwhile, guided by defect recognition performance, the transferability of confusion domain is measured to enhance the distributions of potential domains. In addition, to avoid under-transfer, we consider the relationship between the target data and the decision boundary, and then the significance-augmented (SA) mechanism is proposed to encourage class-level alignment. Thus, the alignment features with domain-invariant and category discrimination can be captured simultaneously. Extensive experiments on collected real industrial datasets and publicly available steel surface defect datasets confirm the effectiveness of our approach.</p></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"238 ","pages":"Article 121879"},"PeriodicalIF":7.5000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417423023813","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Surface defect detection is very important to ensure the quality of industrial products. Traditional machine learning cannot be well extended to a non-identically distributed dataset, making surface defect detection a data-limited task. Unsupervised domain adaptation (UDA) can solve this problem by transferring knowledge from a labeled source domain to an unlabeled target domain. Adversarial learning is one of the latest heuristic methods to deal with domain shift in UDA tasks. Although impressive results have been achieved, the adversarial model still suffers from the equilibrium challenge, which may lead to under-transfer or negative transfer. To this end, we utilize joint distribution adaptation to propose a novel UDA model, named significance-augmented-based category-level selective dual-adversarial (CDASA) network, to learn a generalized model. Specifically, to promote positive transfer, we use the selective dual-adversarial (DA) learning strategy to further minimize the feature distribution difference at equilibrium to achieve better domain confusion. Meanwhile, guided by defect recognition performance, the transferability of confusion domain is measured to enhance the distributions of potential domains. In addition, to avoid under-transfer, we consider the relationship between the target data and the decision boundary, and then the significance-augmented (SA) mechanism is proposed to encourage class-level alignment. Thus, the alignment features with domain-invariant and category discrimination can be captured simultaneously. Extensive experiments on collected real industrial datasets and publicly available steel surface defect datasets confirm the effectiveness of our approach.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.