The complexity of 2-vertex-connected orientation in mixed graphs

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Florian Hörsch , Zoltán Szigeti
{"title":"The complexity of 2-vertex-connected orientation in mixed graphs","authors":"Florian Hörsch ,&nbsp;Zoltán Szigeti","doi":"10.1016/j.disopt.2023.100774","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two possible extensions of a theorem of Thomassen characterizing the graphs admitting a 2-vertex-connected orientation. First, we show that the problem of deciding whether a mixed graph has a 2-vertex-connected orientation is NP-hard. This answers a question of Bang-Jensen, Huang and Zhu. For the second part, we call a directed graph <span><math><mrow><mi>D</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>\n<span><math><mrow><mn>2</mn><mi>T</mi></mrow></math></span>-connected for some <span><math><mrow><mi>T</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> if <span><math><mi>D</mi></math></span> is 2-arc-connected and <span><math><mrow><mi>D</mi><mo>−</mo><mi>v</mi></mrow></math></span> is strongly connected for all <span><math><mrow><mi>v</mi><mo>∈</mo><mi>T</mi></mrow></math></span>. We deduce a characterization of the graphs admitting a <span><math><mrow><mn>2</mn><mi>T</mi></mrow></math></span>-connected orientation from the theorem of Thomassen.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100774"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000166","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider two possible extensions of a theorem of Thomassen characterizing the graphs admitting a 2-vertex-connected orientation. First, we show that the problem of deciding whether a mixed graph has a 2-vertex-connected orientation is NP-hard. This answers a question of Bang-Jensen, Huang and Zhu. For the second part, we call a directed graph D=(V,A) 2T-connected for some TV if D is 2-arc-connected and Dv is strongly connected for all vT. We deduce a characterization of the graphs admitting a 2T-connected orientation from the theorem of Thomassen.

混合图中2点连通方向的复杂度
我们考虑托马森定理的两个可能的扩展,该定理刻画了允许2-顶点连通方向的图。首先,我们证明了判定混合图是否具有2-顶点连通方向的问题是NP困难的。这回答了邦、黄、朱的一个问题。对于第二部分,我们称有向图D=(V,a)2T连通于某些T⊆V,如果D是2-arc连通的,并且D−V强连通于所有V∈T。我们从托马森定理中推导出了图的一个特征,它允许2T连通方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信