Understanding of selective oxidation of Fe-Mn binary alloys during continuous annealing through X-ray photoelectron spectroscopy

L. Gong , D. Alamarguy , N. Ruscassier , P. Haghi-Ashtiani , M.-L. Giorgi
{"title":"Understanding of selective oxidation of Fe-Mn binary alloys during continuous annealing through X-ray photoelectron spectroscopy","authors":"L. Gong ,&nbsp;D. Alamarguy ,&nbsp;N. Ruscassier ,&nbsp;P. Haghi-Ashtiani ,&nbsp;M.-L. Giorgi","doi":"10.1016/j.corcom.2022.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>Selective oxidation of Fe-Mn alloys was characterizied through X-ray photoelectron spectroscopy and scanning/transmission electron microscopy during industrial continuous annealing (in an atmosphere of N<sub>2</sub>–5 vol.% H<sub>2</sub> with traces of water at 800 °C). After annealing, only MnO oxides are formed on and below the surface and few iron oxides appear on the top surface due to oxidation of ambient air or the formation of FeO-MnO solid solutions. Mn concentration profiles exhibit typical selective oxidation and show similar features. Mn concentration first increases to a peak value at a depth of 5–10 nm from surface, and then decreases to the minimum at the oxidation front, following with a floating up and down to bulk composition. According to XPS spectra and Mn concentration profiles as a function of depth, the annealed alloy surfaces can be divided into four zones: ambient air contaminated zone, MnO enrichment zone (external and internal oxidation coexisting here), Mn depletion zone and bulk composition zone. Mn concentration reaches a minimum value at the oxidation front, whose position is deeper with annealing temperature and time increasing. The value of Mn diffusion coefficient in ferrite estimated using diffusion flux at the oxidation front is 2.9 × 10<sup>−15</sup> m<sup>2</sup> s<sup>−1</sup> at 800 °C, which is slightly greater than that in literature.</p></div>","PeriodicalId":100337,"journal":{"name":"Corrosion Communications","volume":"11 ","pages":"Pages 72-82"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667266923000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selective oxidation of Fe-Mn alloys was characterizied through X-ray photoelectron spectroscopy and scanning/transmission electron microscopy during industrial continuous annealing (in an atmosphere of N2–5 vol.% H2 with traces of water at 800 °C). After annealing, only MnO oxides are formed on and below the surface and few iron oxides appear on the top surface due to oxidation of ambient air or the formation of FeO-MnO solid solutions. Mn concentration profiles exhibit typical selective oxidation and show similar features. Mn concentration first increases to a peak value at a depth of 5–10 nm from surface, and then decreases to the minimum at the oxidation front, following with a floating up and down to bulk composition. According to XPS spectra and Mn concentration profiles as a function of depth, the annealed alloy surfaces can be divided into four zones: ambient air contaminated zone, MnO enrichment zone (external and internal oxidation coexisting here), Mn depletion zone and bulk composition zone. Mn concentration reaches a minimum value at the oxidation front, whose position is deeper with annealing temperature and time increasing. The value of Mn diffusion coefficient in ferrite estimated using diffusion flux at the oxidation front is 2.9 × 10−15 m2 s−1 at 800 °C, which is slightly greater than that in literature.

用X射线光电子能谱理解Fe-Mn二元合金在连续退火过程中的选择性氧化
通过X射线光电子能谱和扫描/透射电子显微镜对Fe-Mn合金在工业连续退火过程中的选择性氧化进行了表征(在N2–5 vol.%H2的气氛中,800°C下有微量水)。退火后,由于环境空气的氧化或FeO-MnO固溶体的形成,只有MnO氧化物在表面上和表面下形成,而很少有氧化铁出现在顶表面上。Mn浓度分布表现出典型的选择性氧化并显示出类似的特征。Mn浓度首先在距离表面5–10 nm的深度处增加到峰值,然后在氧化前沿降低到最小值,随后出现上下浮动的块状成分。根据XPS光谱和作为深度函数的Mn浓度分布,退火合金表面可分为四个区域:环境空气污染区、MnO富集区(外部和内部氧化共存)、Mn贫化区和本体成分区。Mn浓度在氧化前沿达到最小值,其位置随着退火温度和时间的增加而加深。在800°C下,使用氧化前沿的扩散通量估算的铁氧体中Mn扩散系数值为2.9×10−15 m2 s−1,略高于文献中的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信