{"title":"SGBA: A stealthy scapegoat backdoor attack against deep neural networks","authors":"Ying He, Zhili Shen, Chang Xia, Jingyu Hua, Wei Tong, Sheng Zhong","doi":"10.1016/j.cose.2023.103523","DOIUrl":null,"url":null,"abstract":"<div><p>Outsourced deep neural networks have been demonstrated to suffer from patch-based trojan attacks, in which an adversary poisons the training sets to inject a backdoor in the obtained model so that regular inputs can be still labeled correctly while those carrying a specific trigger are falsely given a target label. Due to the severity of such attacks, many backdoor detection and containment systems have recently, been proposed for deep neural networks. One major category among them are various model inspection schemes, which hope to detect backdoors before deploying models from non-trusted third-parties. In this paper, we show that such state-of-the-art schemes can be defeated by a so-called Scapegoat Backdoor Attack, which introduces a benign scapegoat trigger in data poisoning to prevent the defender from reversing the real abnormal trigger. In addition, it confines the values of network parameters within the same variances of those from clean model during training, which further significantly enhances the difficulty of the defender to learn the differences between legal and illegal models through machine-learning approaches. Our experiments on 3 popular datasets show that it can escape detection by all five state-of-the-art model inspection schemes. Moreover, this attack brings almost no side-effects on the attack effectiveness and guarantees the universal feature of the trigger compared with original patch-based trojan attacks.</p></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"136 ","pages":"Article 103523"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404823004339","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Outsourced deep neural networks have been demonstrated to suffer from patch-based trojan attacks, in which an adversary poisons the training sets to inject a backdoor in the obtained model so that regular inputs can be still labeled correctly while those carrying a specific trigger are falsely given a target label. Due to the severity of such attacks, many backdoor detection and containment systems have recently, been proposed for deep neural networks. One major category among them are various model inspection schemes, which hope to detect backdoors before deploying models from non-trusted third-parties. In this paper, we show that such state-of-the-art schemes can be defeated by a so-called Scapegoat Backdoor Attack, which introduces a benign scapegoat trigger in data poisoning to prevent the defender from reversing the real abnormal trigger. In addition, it confines the values of network parameters within the same variances of those from clean model during training, which further significantly enhances the difficulty of the defender to learn the differences between legal and illegal models through machine-learning approaches. Our experiments on 3 popular datasets show that it can escape detection by all five state-of-the-art model inspection schemes. Moreover, this attack brings almost no side-effects on the attack effectiveness and guarantees the universal feature of the trigger compared with original patch-based trojan attacks.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.