{"title":"Reinforcement learning for swarm robotics: An overview of applications, algorithms and simulators","authors":"Marc-Andrė Blais, Moulay A. Akhloufi","doi":"10.1016/j.cogr.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Robots such as drones, ground rovers, underwater vehicles and industrial robots have increased in popularity in recent years. Many sectors have benefited from this by increasing productivity while also decreasing costs and certain risks to humans. These robots can be controlled individually but are more efficient in a large group, also known as a swarm. However, an increase in the quantity and complexity of robots creates the need for an adequate control system. Reinforcement learning, an artificial intelligence paradigm, is an increasingly popular approach to control a swarm of unmanned vehicles. The quantity of reviews in the field of reinforcement learning-based swarm robotics is limited. We propose reviewing the various applications, algorithms and simulators on the subject to fill this gap. First, we present the current applications on swarm robotics with a focus on reinforcement learning control systems. Subsequently, we define important reinforcement learning terminologies, followed by a review of the current state-of-the-art in the field of swarm robotics utilizing reinforcement learning. Additionally, we review the various simulators used to train, validate and simulate swarms of unmanned vehicles. We finalize our review by discussing our findings and the possible directions for future research. Overall, our review demonstrates the potential and state-of-the-art reinforcement learning-based control systems for swarm robotics.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 226-256"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241323000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Robots such as drones, ground rovers, underwater vehicles and industrial robots have increased in popularity in recent years. Many sectors have benefited from this by increasing productivity while also decreasing costs and certain risks to humans. These robots can be controlled individually but are more efficient in a large group, also known as a swarm. However, an increase in the quantity and complexity of robots creates the need for an adequate control system. Reinforcement learning, an artificial intelligence paradigm, is an increasingly popular approach to control a swarm of unmanned vehicles. The quantity of reviews in the field of reinforcement learning-based swarm robotics is limited. We propose reviewing the various applications, algorithms and simulators on the subject to fill this gap. First, we present the current applications on swarm robotics with a focus on reinforcement learning control systems. Subsequently, we define important reinforcement learning terminologies, followed by a review of the current state-of-the-art in the field of swarm robotics utilizing reinforcement learning. Additionally, we review the various simulators used to train, validate and simulate swarms of unmanned vehicles. We finalize our review by discussing our findings and the possible directions for future research. Overall, our review demonstrates the potential and state-of-the-art reinforcement learning-based control systems for swarm robotics.