Review on lane detection and related methods

Weiyu Hao
{"title":"Review on lane detection and related methods","authors":"Weiyu Hao","doi":"10.1016/j.cogr.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Road detection remains a captivating and crucial aspect of any form of autonomous driving. In this manuscript, we furnish a comprehensive appraisal of recent advancements in road lane detection, a fundamental component integral to autonomous driving. Despite numerous methodologies being proposed to augment accuracy while expediting speed, various hindrances, including lane marking variations, lighting fluctuations, and shadowy conditions, necessitate the establishment of dependable detection systems. Model-based and learning-based methods represent the two predominant techniques for lane detection. Model-based methods afford rapid computation speeds, while learning-based methods extend robustness amidst complexity. This paper delves into the techniques of lane detection and forecasts upcoming trends in the field. Collectively, this review offers a sturdy foundation for prospective research in the realm of road lane detection.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"3 ","pages":"Pages 135-141"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241323000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Road detection remains a captivating and crucial aspect of any form of autonomous driving. In this manuscript, we furnish a comprehensive appraisal of recent advancements in road lane detection, a fundamental component integral to autonomous driving. Despite numerous methodologies being proposed to augment accuracy while expediting speed, various hindrances, including lane marking variations, lighting fluctuations, and shadowy conditions, necessitate the establishment of dependable detection systems. Model-based and learning-based methods represent the two predominant techniques for lane detection. Model-based methods afford rapid computation speeds, while learning-based methods extend robustness amidst complexity. This paper delves into the techniques of lane detection and forecasts upcoming trends in the field. Collectively, this review offers a sturdy foundation for prospective research in the realm of road lane detection.

Abstract Image

车道检测及相关方法综述
道路检测仍然是任何形式的自动驾驶的一个迷人而关键的方面。在这份手稿中,我们对道路车道检测的最新进展进行了全面评估,道路车道检测是自动驾驶不可或缺的基本组成部分。尽管提出了许多方法来提高准确性,同时加快速度,但各种障碍,包括车道标线变化、照明波动和阴影条件,都需要建立可靠的检测系统。基于模型和基于学习的方法代表了车道检测的两种主要技术。基于模型的方法提供了快速的计算速度,而基于学习的方法在复杂性中扩展了鲁棒性。本文深入研究了车道检测技术,并预测了该领域即将出现的趋势。总之,这篇综述为道路车道检测领域的前瞻性研究奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信