{"title":"Size-separated aerosol chemical characterization over Ny-Ålesund during the Arctic summer of 2010","authors":"Sunil M. Sonbawne , M.P. Raju , P.D. Safai , P.C.S. Devara , Suvarna Fadnavis , A.S. Panicker , G. Pandithurai","doi":"10.1016/j.scca.2023.100016","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical composition of aerosols is of great concern in the Arctic because of its great influence on climate. In this communication, we report the physico-chemical properties of size-separated aerosol data archived at Gruvebadet lab in Ny-Ålesund (78.55°S, 11.55°E) as a part of the Indian Arctic Mission over the station \"Himadri\" in 2010. The results reveal that the mass-size distribution (MSD) of aerosol composition exhibits tri-modal distribution with coarse-mode (62%), fine-mode (32%) and weak nucleation-mode (6%) indicating dominance of natural sources over the study region. MSD of chemical components showed a significant contribution to coarse-mode particles for Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and Cl<sup>−</sup>; fine-mode particles for SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, NH<sub>4</sub><sup>+</sup> and <em>K</em><sup>+</sup>. The marine sources contributed maximum for SO<sub>4</sub><sup>2−</sup> (89%) and Mg<sup>2+</sup> (44%) in the coarse fraction, and in the fine fraction, 31% to SO<sub>4</sub><sup>2−</sup> and 86% to Mg<sup>2+</sup>. Non-marine sources were major contributors (80 to 95%) in both mode fractions for Ca<sup>2+</sup>and <em>K</em><sup>+</sup>. The estimated aerosol radiative forcing in the atmosphere of ∼3.21 W/m<sup>2</sup> could be attributed to the loading of black carbon aerosols (62%) over the site. The backward trajectories show air masses from Canada and Greenland travelling from 6000 m elevation, bringing the pollutants to Ny-Ålesund and lower altitudes; the oceanic region within Arctic circle contributes more.</p></div>","PeriodicalId":101195,"journal":{"name":"Sustainable Chemistry for Climate Action","volume":"2 ","pages":"Article 100016"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for Climate Action","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772826923000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical composition of aerosols is of great concern in the Arctic because of its great influence on climate. In this communication, we report the physico-chemical properties of size-separated aerosol data archived at Gruvebadet lab in Ny-Ålesund (78.55°S, 11.55°E) as a part of the Indian Arctic Mission over the station "Himadri" in 2010. The results reveal that the mass-size distribution (MSD) of aerosol composition exhibits tri-modal distribution with coarse-mode (62%), fine-mode (32%) and weak nucleation-mode (6%) indicating dominance of natural sources over the study region. MSD of chemical components showed a significant contribution to coarse-mode particles for Ca2+, Mg2+, Na+ and Cl−; fine-mode particles for SO42−, NO3−, NH4+ and K+. The marine sources contributed maximum for SO42− (89%) and Mg2+ (44%) in the coarse fraction, and in the fine fraction, 31% to SO42− and 86% to Mg2+. Non-marine sources were major contributors (80 to 95%) in both mode fractions for Ca2+and K+. The estimated aerosol radiative forcing in the atmosphere of ∼3.21 W/m2 could be attributed to the loading of black carbon aerosols (62%) over the site. The backward trajectories show air masses from Canada and Greenland travelling from 6000 m elevation, bringing the pollutants to Ny-Ålesund and lower altitudes; the oceanic region within Arctic circle contributes more.