Mechanical Anisotropy of Selective Laser Melted Ti-6Al-4V Using a Reduced-order Crystal Plasticity Finite Element Model

Yang Liu , Feng Yu , Yonggang Wang
{"title":"Mechanical Anisotropy of Selective Laser Melted Ti-6Al-4V Using a Reduced-order Crystal Plasticity Finite Element Model","authors":"Yang Liu ,&nbsp;Feng Yu ,&nbsp;Yonggang Wang","doi":"10.1016/j.cjmeam.2023.100062","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a reduced-order crystal plasticity finite element (CPFE) model was developed to study the effects of the microstructural morphology and crystallographic texture on the mechanical anisotropy of selective laser melted (SLMed) Ti-6Al-4V. First, both hierarchical and equiaxed microstructures in columnar prior grains were modeled to examine the influence of the microstructural morphology on mechanical anisotropy. Second, the effects of crystallographic anisotropy and textural variability on mechanical anisotropy were investigated at the granular and representative volume element (RVE) scales, respectively. The results show that hierarchical and equiaxed CPFE models with the same crystallographic texture exhibit the same mechanical anisotropy. At the granular scale, the significance of crystallographic anisotropy varies with different crystal orientations. This indicates that the present SLMed Ti-6Al-4V sample with weak mechanical anisotropy resulted from the synthetic effect of crystallographic anisotropies at the granular scale. Therefore, combinations of various crystallographic textures were applied to the reduced-order CPFE model to design SLMed Ti-6Al-4V with different mechanical anisotropies. Thus, the crystallographic texture is considered the main controlling variable for the mechanical anisotropy of SLMed Ti-6Al-4V in this study.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"2 1","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665723000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, a reduced-order crystal plasticity finite element (CPFE) model was developed to study the effects of the microstructural morphology and crystallographic texture on the mechanical anisotropy of selective laser melted (SLMed) Ti-6Al-4V. First, both hierarchical and equiaxed microstructures in columnar prior grains were modeled to examine the influence of the microstructural morphology on mechanical anisotropy. Second, the effects of crystallographic anisotropy and textural variability on mechanical anisotropy were investigated at the granular and representative volume element (RVE) scales, respectively. The results show that hierarchical and equiaxed CPFE models with the same crystallographic texture exhibit the same mechanical anisotropy. At the granular scale, the significance of crystallographic anisotropy varies with different crystal orientations. This indicates that the present SLMed Ti-6Al-4V sample with weak mechanical anisotropy resulted from the synthetic effect of crystallographic anisotropies at the granular scale. Therefore, combinations of various crystallographic textures were applied to the reduced-order CPFE model to design SLMed Ti-6Al-4V with different mechanical anisotropies. Thus, the crystallographic texture is considered the main controlling variable for the mechanical anisotropy of SLMed Ti-6Al-4V in this study.

基于降阶晶体塑性有限元模型的选择性激光熔化Ti-6Al-4V的力学各向异性
在本研究中,建立了一个降阶晶体塑性有限元(CPFE)模型来研究微观结构形态和晶体织构对选择性激光熔化(SLMed)Ti-6Al-4V的机械各向异性的影响。首先,对柱状先前晶粒中的分级和等轴微观结构进行建模,以检查微观结构形态对机械各向异性的影响。其次,分别在颗粒和代表体积元素(RVE)尺度上研究了晶体各向异性和织构可变性对机械各向异性的影响。结果表明,具有相同晶体结构的分级和等轴CPFE模型表现出相同的机械各向异性。在颗粒尺度上,晶体各向异性的重要性随着晶体取向的不同而变化。这表明,目前具有弱机械各向异性的SLMed Ti-6Al-4V样品是由颗粒尺度上的晶体各向异性的合成效应引起的。因此,将各种晶体织构的组合应用于降阶CPFE模型,以设计具有不同机械各向异性的SLMed Ti-6Al-4V。因此,在本研究中,晶体织构被认为是SLMed Ti-6Al-4V机械各向异性的主要控制变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信