Ali Amraeiniya , Soroush Shojaei , Amir Ali Mohseni , Behzad Haj Abbasi Mahani , Sogand Saatchi , Arash Barahooie Bahari , Seyyed Mohammad Mousavi Sisakht
{"title":"Experimental study on nanoparticles-assisted low-salinity water for enhanced oil recovery in asphaltenic oil reservoirs","authors":"Ali Amraeiniya , Soroush Shojaei , Amir Ali Mohseni , Behzad Haj Abbasi Mahani , Sogand Saatchi , Arash Barahooie Bahari , Seyyed Mohammad Mousavi Sisakht","doi":"10.1016/j.petlm.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this research is to look into the augmentation of silica nanoparticles (NPs) with low salinity (LowSal) brine for EOR. A series of analyses, including oil/water interfacial tension (IFT) and rock wettability tests were undertaken to determine an optimal dispersion to flood into a porous carbonate core with a defined pore size distribution. At 60°C and 14.5 psi, the maximum drop (i.e., roughly 12.5 mN/m) in oil/water IFT by 0.3 wt% brine occurred, but when 0.08 wt% silica was added to the brine, the IFT reduced to 14.51 mN/m at 60°C and 14.5 psi. The wettability analysis revealed a significant reduction in contact angle, from 142° to 72° and 59°, using 0.04 and 0.08 wt% silica in LowSal brine, but the extent reduced by brine alone was insufficient. The results of rock pore size characterization were discussed in terms of the accomplishment of operating EOR in the porous medium in the presence of NPs. The addition of 0.08 wt% silica to the injected brine resulted in an additional oil recovery of 16.3% OOIP as well as a significant shift in the endpoints/cross-points of the oil/water relative permeability curves. The findings of this research might help improve oil recovery from asphaltenic oil reservoirs or, more environmentally friendly, remediate petroleum crude-oil polluted soil.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"9 3","pages":"Pages 395-402"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656122000633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of this research is to look into the augmentation of silica nanoparticles (NPs) with low salinity (LowSal) brine for EOR. A series of analyses, including oil/water interfacial tension (IFT) and rock wettability tests were undertaken to determine an optimal dispersion to flood into a porous carbonate core with a defined pore size distribution. At 60°C and 14.5 psi, the maximum drop (i.e., roughly 12.5 mN/m) in oil/water IFT by 0.3 wt% brine occurred, but when 0.08 wt% silica was added to the brine, the IFT reduced to 14.51 mN/m at 60°C and 14.5 psi. The wettability analysis revealed a significant reduction in contact angle, from 142° to 72° and 59°, using 0.04 and 0.08 wt% silica in LowSal brine, but the extent reduced by brine alone was insufficient. The results of rock pore size characterization were discussed in terms of the accomplishment of operating EOR in the porous medium in the presence of NPs. The addition of 0.08 wt% silica to the injected brine resulted in an additional oil recovery of 16.3% OOIP as well as a significant shift in the endpoints/cross-points of the oil/water relative permeability curves. The findings of this research might help improve oil recovery from asphaltenic oil reservoirs or, more environmentally friendly, remediate petroleum crude-oil polluted soil.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing