{"title":"Water Ice Sublimation Distribution on the Surface of Short Period Comet","authors":"LIU Can , ZHAO Yu-hui , JI Jiang-hui","doi":"10.1016/j.chinastron.2023.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>Comets are the primitive planetesimals<span><span> left in the solar system. Studying the evolution of comet nucleus is of great significance for understanding the formation and evolution history of other </span>celestial bodies<span> in the solar system. Under the action of solar radiation, the volatile components of comets sublimate and drive the dust movement, resulting in the loss of comet nucleus material. Therefore, the activity of comet nucleus affects the surface morphology and even the overall shape evolution. The orbit data were obtained from IAU (International Astronomical Union) MPC (Minor Planet Center), and the spin and precession of comet nucleus were taken into account. The shape evolution model of Mass loss-driven shape evolution model (MONET) was used to simulate the short period comet. The distribution of solar radiation energy and surface erosion depth of short-period comet 1P/Halley, 9P/Tempel 1, 19P/Borrelly, 67P/C-G (Churyumov-Gerasimenko), 81P/Wild 2, and 103P/Hartley 2 in one orbital period is calculated. Combined with its dynamic parameters, the effects of rotation, precession, and revolution on the sublimation distribution of surface water ice and the possibility of causing the difference in erosion between north and south are discussed.</span></span></p></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"47 3","pages":"Pages 637-658"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106223000607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Comets are the primitive planetesimals left in the solar system. Studying the evolution of comet nucleus is of great significance for understanding the formation and evolution history of other celestial bodies in the solar system. Under the action of solar radiation, the volatile components of comets sublimate and drive the dust movement, resulting in the loss of comet nucleus material. Therefore, the activity of comet nucleus affects the surface morphology and even the overall shape evolution. The orbit data were obtained from IAU (International Astronomical Union) MPC (Minor Planet Center), and the spin and precession of comet nucleus were taken into account. The shape evolution model of Mass loss-driven shape evolution model (MONET) was used to simulate the short period comet. The distribution of solar radiation energy and surface erosion depth of short-period comet 1P/Halley, 9P/Tempel 1, 19P/Borrelly, 67P/C-G (Churyumov-Gerasimenko), 81P/Wild 2, and 103P/Hartley 2 in one orbital period is calculated. Combined with its dynamic parameters, the effects of rotation, precession, and revolution on the sublimation distribution of surface water ice and the possibility of causing the difference in erosion between north and south are discussed.
期刊介绍:
The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.