{"title":"Advanced Additive Remanufacturing Technology","authors":"Sheng Zhu, Wenbo Du, Xiaoming Wang, Guofeng Han, Zhiqiang Ren, Kebing Zhou","doi":"10.1016/j.cjmeam.2023.100066","DOIUrl":null,"url":null,"abstract":"<div><p>Additive remanufacturing technology, as one of the key technologies of remanufacturing engineering, can realize the integrated repair of the structure and function of high value-added key metal parts of large and complex equipment, which can significantly reduce the use and maintenance costs, save labor and time costs. It applies to the on-site repair and remanufacturing of key parts in the aerospace, energy and chemical industry, heavy haul machinery, and other fields, as well as the on-site rapid repair of parts in special environments such as tunnels, open seas, and space. Additive remanufacturing technology can promote the reform of the maintenance and support mode of weapons and equipment and become the research hotspot of major military-developed countries. This paper expounds on the connotation and characteristics of additive remanufacturing technology and introduces its evolution process. The research achievements of the author in the development of additive remanufacturing platforms, material design, and process optimization were summarized. Given the problems (such as control shape, control performance, and control position) in the additive remanufacturing process, the author puts forward solutions and looks forward to the future development direction of additive remanufacturing technology.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"2 1","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665723000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Additive remanufacturing technology, as one of the key technologies of remanufacturing engineering, can realize the integrated repair of the structure and function of high value-added key metal parts of large and complex equipment, which can significantly reduce the use and maintenance costs, save labor and time costs. It applies to the on-site repair and remanufacturing of key parts in the aerospace, energy and chemical industry, heavy haul machinery, and other fields, as well as the on-site rapid repair of parts in special environments such as tunnels, open seas, and space. Additive remanufacturing technology can promote the reform of the maintenance and support mode of weapons and equipment and become the research hotspot of major military-developed countries. This paper expounds on the connotation and characteristics of additive remanufacturing technology and introduces its evolution process. The research achievements of the author in the development of additive remanufacturing platforms, material design, and process optimization were summarized. Given the problems (such as control shape, control performance, and control position) in the additive remanufacturing process, the author puts forward solutions and looks forward to the future development direction of additive remanufacturing technology.